Mostrando postagens com marcador neurociência. Mostrar todas as postagens
Mostrando postagens com marcador neurociência. Mostrar todas as postagens

Desempenho cognitivo

Habilidades cognitivas
Ouça o artigo:

Imagine um maestro que rege uma orquestra sem partitura fixa. Ele precisa alternar entre dar espaço para cada instrumento tocar sozinho e momentos em que todos soam juntos em harmonia. Essa alternância, longe de ser caótica, é o que dá vida à música. Algo parecido acontece dentro do nosso cérebro — mesmo quando estamos aparentemente em repouso. O tema é fascinante porque mexe com um mito: a ideia de que existe uma configuração cerebral “ideal” para pensar melhor, lembrar mais ou reagir mais rápido. O que a ciência recente sugere é que não existe um único arranjo vencedor. Em vez disso, nosso cérebro opera numa tensão dinâmica entre dois modos opostos: segregação e integração.

Segregação, no jargão da neurociência de redes, é a capacidade de manter processamento especializado em regiões cerebrais distintas. Pense em uma cozinha de restaurante: cada estação cuida de um tipo de prato e não se mistura demais com as outras. Isso permite foco e eficiência dentro de cada setor.

Integração, por outro lado, é quando as diferentes partes do cérebro colaboram intensamente. Usando a mesma metáfora, seria como se o chefe pedisse para todas as estações trocarem ingredientes e coordenarem o preparo de um banquete único, onde cada prato se conecta com os outros.

Esses dois modos não são mutuamente excludentes, mas representam extremos de uma régua imaginária. Um cérebro pode estar mais inclinado a um lado ou ao outro, e essa inclinação tem consequências claras para a forma como pensamos e resolvemos problemas.

Talvez soe contraintuitivo, mas mesmo quando não estamos realizando nenhuma tarefa específica, o cérebro está longe de “parado”. O chamado estado de repouso, medido em experimentos usando fMRI (ressonância magnética funcional), revela padrões de comunicação entre regiões que não surgem do nada. Esses padrões de “repouso” parecem preparar o terreno para o que faremos depois.

Estudos mostram que redes cerebrais em repouso já carregam uma espécie de prontidão para alternar entre segregação e integração. Isso significa que, antes mesmo de recebermos um estímulo ou desafio, o cérebro está se organizando para poder responder de diferentes maneiras, dependendo do que vier.

Pesquisadores encontraram algo curioso: cérebros jovens e saudáveis tendem a manter, em média, um equilíbrio funcional entre segregação e integração quando estão em repouso. Esse ponto de balanço não é uma média morta, e sim um estado que permite flexibilidade máxima para alternar rapidamente entre os dois modos.

Flexibilidade, aqui, não é só um detalhe técnico, é uma característica associada à capacidade de enfrentar demandas cognitivas variadas. Um cérebro muito segregado pode ser ótimo para executar tarefas rápidas e precisas, mas pode falhar quando a situação exige associação de ideias distantes. Um cérebro muito integrado pode ser excelente para raciocínio complexo, mas se perder em detalhes mais específicos.

O estudo traz resultados intrigantes quando relaciona o perfil da rede cerebral com diferentes habilidades cognitivas:

Maior integração → está associada a um desempenho melhor em habilidades cognitivas gerais, especialmente aquelas ligadas à chamada inteligência fluida — a capacidade de resolver problemas novos, raciocinar logicamente e lidar com informações complexas.

Maior segregação → tende a favorecer a inteligência cristalizada (o conjunto de conhecimentos acumulados ao longo da vida) e também a velocidade de processamento, que é a rapidez com que conseguimos executar tarefas simples e responder a estímulos.

Equilíbrio entre os dois → beneficia especialmente a memória. Mais interessante ainda: essa relação não é linear. Memória não melhora simplesmente com mais integração ou mais segregação — ela se fortalece quando o cérebro transita bem entre os dois polos.

Um ponto fundamental é que não basta ter redes equilibradas no sentido estático. O que parece realmente importante é a capacidade de transitar entre modos segregados e integrados de forma eficiente. Essa alternância não é aleatória: cérebros equilibrados gastam tempos parecidos nos dois estados e fazem a troca com maior frequência do que cérebros muito segregados ou muito integrados.

Podemos imaginar isso como a habilidade de mudar de marcha ao dirigir. Um carro que só anda em primeira marcha (muita segregação) vai bem em ladeiras curtas, mas não em estradas longas. Um que só anda em quinta (muita integração) é ótimo para manter velocidade, mas péssimo para manobrar em ruas estreitas. O equilíbrio permite usar a marcha certa no momento certo.

O método usado para chegar a essas conclusões não olhou apenas para redes em um único “nível de zoom”. A análise hierárquica revelou que a organização funcional do cérebro é como uma série de mapas sobrepostos, onde módulos maiores contêm submódulos menores, que por sua vez contêm unidades ainda mais específicas.

Essa visão multi-escala é importante porque a segregação e a integração acontecem ao mesmo tempo em diferentes níveis. Em uma escala ampla, podemos ter dois grandes módulos integrados internamente, mas relativamente segregados um do outro. Em uma escala mais fina, cada módulo pode ser altamente integrado com seus vizinhos imediatos. É essa sobreposição que cria um leque de possibilidades para o processamento da informação.

Se esses padrões de rede influenciam habilidades cognitivas específicas, podemos imaginar intervenções direcionadas. Treinamentos mentais, tarefas específicas ou até técnicas de neuromodulação poderiam, em teoria, favorecer mais integração ou mais segregação, dependendo da meta.

Por exemplo: alguém que precisa ampliar a capacidade de raciocínio lógico e lidar com problemas inéditos talvez se beneficie de práticas que estimulem redes mais integradas. Já quem busca rapidez de resposta e precisão em tarefas específicas poderia focar em estratégias que reforcem a segregação. No caso da memória, talvez o treino de alternância entre contextos — forçando o cérebro a transitar entre modos — seja mais útil.

Esses achados também dialogam com a Teoria da Neurociência de Redes (Network Neuroscience Theory), que propõe que diferentes tipos de inteligência se apoiam em diferentes “estados” de rede. A novidade aqui é que a análise hierárquica trouxe mais clareza e quantificação para algo que antes era mais uma hipótese.

Interessante notar: embora se imagine que o equilíbrio seja sempre vantajoso, o estudo mostra que ele não é o “melhor” para todas as funções. Para algumas habilidades, extremos bem calibrados (mais segregação ou mais integração) funcionam melhor. Isso reforça a ideia de que o cérebro não tem uma forma única de otimizar desempenho — ele ajusta o modo de operar conforme a demanda.

Se voltarmos à metáfora do maestro, fica mais fácil visualizar. Há momentos em que ele quer todos tocando juntos, criando camadas sonoras densas (integração). Em outros, silencia parte da orquestra para dar espaço a um solo específico (segregação). Um maestro que nunca muda a formação vai acabar limitando o repertório; um que troca o tempo todo sem critério pode gerar confusão. O bom regente é aquele que ajusta com sensibilidade e rapidez — exatamente o que o cérebro equilibrado parece fazer.

Há algo de poético nesse retrato do cérebro: um sistema que vive num ponto de tensão produtiva entre ordem e caos, entre foco e abertura. Essa tensão, longe de ser um defeito, pode ser a fonte de nossa adaptabilidade.

Isso abre uma pergunta inevitável: se entendermos melhor como cultivar ou manter esse equilíbrio, poderemos otimizar funções cognitivas específicas? Ou será que mexer demais nesse delicado balanço pode ter efeitos colaterais inesperados? Como toda boa questão científica, essa não se responde de imediato — mas o caminho está mais claro do que nunca.

Talvez, no futuro, em vez de pensar em “potencializar o cérebro” como um todo, possamos pensar em “afinar” suas redes para diferentes usos, como um músico que prepara seu instrumento para a peça que vai tocar. Até lá, resta a certeza de que, dentro de nossas cabeças, a orquestra nunca para de tocar — e o maestro, felizmente, sabe alternar entre o solo e o tutti com maestria.

 


Referências:

Segregação, integração e equilíbrio de redes cerebrais em repouso em larga escala configuram diferentes habilidades cognitivas - Diversos processos cognitivos impõem diferentes demandas à atividade cerebral localmente segregada e globalmente integrada. No entanto, ainda não está claro como os cérebros em repouso configuram sua organização funcional para equilibrar as demandas de segregação e integração de redes, a fim de melhor atender à cognição. Aqui, utilizamos uma abordagem baseada em automodos para identificar módulos hierárquicos em redes cerebrais funcionais e quantificar o equilíbrio funcional entre segregação e integração de redes.   https://arxiv.org/abs/2103.00475

Um entendimento da neurobiologia do sono

Neurobiologia do sono
Ouça o artigo:

Imagine-se deitado numa noite comum, os olhos focados no teto, enquanto a mente se recusa a aportar no porto tranquilo do sono. Talvez você já tenha sentido essa frustração, como se um interruptor interno tivesse queimado, deixando seu cérebro em vigília constante. Nesse cenário, a neurobiologia do sono se revela não apenas fascinante, mas essencial para compreendermos por que algumas noites escorregam pelo nosso controle e outras nos envolvem em um abraço reparador.

O sono é um fenômeno multifacetado: não se resume a fechar os olhos e, pronto, entrar em um estado de inatividade. É um processo ativo, orquestrado por redes neuronais específicas e moduladores químicos, que se alternam entre fases distintas — o sono de ondas lentas (o tal do slow wave sleep, marcado por ondas delta) e o sono REM (rapid eye movement), onde os sonhos costumam emergir. Cada ciclo dura em média noventa minutos, e a sequência ideal varia de quatro a seis ciclos por noite. Mas por que, afinal, nos afastamos do padrão ideal?

Em primeiro lugar, é preciso considerar o papel do ritmo circadiano (o “relógio biológico” que regula praticamente tudo em nosso corpo). Esse relógio reside no núcleo supraquiasmático (SCN, uma pequena região do hipotálamo) e recebe informações luminosas diretamente da retina. Quando a luz cai, dizemos ao SCN que é dia; no escuro, ele libera sinais químicos — por exemplo, melatonina (um indutor de sono produzido pela glândula pineal) — para avisar que a hora de descansar se aproxima. Esse mecanismo é tão primoroso que regula também a liberação de hormônios como o cortisol (o qual, quando em excesso à noite, atrapalha o adormecer, pois atua como acelerador do sistema de alerta).

Mas há um segundo ator no palco: a homeostase do sono. Imagine um contador interno que vai registrando, em cada minuto acordado, uma “dívida de sono”. Quanto mais tempo ficamos sem dormir, maior essa dívida e, portanto, maior o impulso para dormir profundo (o sono de ondas lentas). O compostor bioquímico desse mecanismo se chama adenosina (um neuromodulador que impede a disparada excessiva de neurônios, promovendo descanso). À medida que nos mantemos despertos, níveis crescentes de adenosina se acumulam no cérebro, sinalizando aquela famosa sonolência tarde da tarde. Quando finalmente deitamos a cabeça, a adenosina age: reduz a excitabilidade neural e facilita a transição para o sono.

Porém, no mundo real, nossa “dívida” nem sempre é paga. Há fatores ambientais, como luzes artificiais e ruídos, e fatores internos, como estresse, ansiedade, mudanças hormonais e condições patológicas. Insônia, por exemplo, é definida como dificuldade para iniciar, manter ou obter sono reparador, mesmo com oportunidade adequada. E mais: pessoas com insônia crônica costumam apresentar hiperarousal (hiperestimulação fisiológica) — ou seja, o corpo “se recusa” a desacelerar. Em vez de detectar o acúmulo de adenosina e convidar ao descanso, o organismo segue em alerta máximo, como se algo ainda estivesse por acontecer.

Existe um conjunto de neurotransmissores, corticotropina (CRH), noradrenalina, dopamina — que participam do circuito de estresse e emoção. Quando esses mensageiros estão em alta, o sono sofre um boicote: áreas do sistema límbico, responsáveis pelas emoções e memória, incham de atividade, liberando adrenalina e mantendo o córtex pré-frontal (centro de cognição) em estado de vigília leve ou até moderada. Resultado: insônia de manutenção, fragmentada, com despertares frequentes, sono superficial e sensação de cansaço no dia seguinte.

Eu tive algumas reflexões quando observava algumas pessoas com insônia primária: muitos relatam se sentir “ligados” até horas após deitar, incapazes de desligar pensamentos sobre prazos, responsabilidades e até lembranças de conversas antigas. É como se o cérebro adotasse um modo sicronizado com o estresse. Essa analogia com circuitos elétricos nem sempre é perfeita, mas ilustra a dificuldade de modular adequadamente a energia interna. Em estágio ideal, o hipotálamo anterior ventrolateral (VLPO) — composto por neurônios galaninérgicos e GABAérgicos — atua como um freio: ao ativar-se, ele inibe grupos neuronais responsáveis pela vigília (monoaminas do tronco cerebral). Porém, na insônia, a interação entre VLPO e essas regiões de vigília parece enfraquecida, e o freio não segurar o acelerador.

Vale observar como certos animais compartilham mecanismos básicos de sono. Em Drosophila melanogaster (a mosca-da-fruta), variantes genéticas afetam diretamente padrões de descanso, apontando para a importância de genes e proteínas no processo. Os chamados clock genes (genes do relógio) compõem o mecanismo de feedback molecular que regula o ciclo circadiano. Em mamíferos, proteínas semelhantes desempenham papel análogo no núcleo supraquiasmático, reforçando a tese de que dormir é uma necessidade tão antiga quanto a própria vida complexa.

Retornando ao assunto humano, surge a hipótese de que tratamentos eficazes (terapia cognitivo-comportamental para insônia ou uso de agonistas adrenérgicos específicos) podem “recalibrar” esses circuitos. Estudos indicam que terapias podem diminuir níveis de cortisol noturno e reduzir atividade no córtex pré-frontal dorsal, facilitando a ativação apropriada do VLPO. Será que, então, a insônia poderia ser encarada como uma disfunção reversível dos sistemas de regulação de sono? Os resultados iniciais apontam para sim, mas precisamos de pesquisas com monitoramento neurobiológico detalhado, como EEG de alta densidade e ressonância magnética funcional.

Mas não é só o estresse que mexe com nosso descanso. Mudanças na arquitetura do sono ocorrem naturalmente com a idade: o sono de ondas lentas diminui, a eficiência do sono cai e os despertares noturnos aumentam. Hormônios como estradiol e progesterona (nas mulheres pós-menopausa) e a queda de melatonina impactam profundamente essa dinâmica. Já nos jovens, fatores de desenvolvimento neural podem interferir, provocando atrasos na fase de sono (o famoso “jet lag social” dos adolescentes, que levam o sono para tarde da noite e têm dificuldade de acordar cedo).

Em paralelo, há uma interação intrigante entre emoção e sono. O sistema límbico, especialmente a amígdala, modular o sono e a vigília. Experiências aversivas (condicionamento de medo) podem causar insônia transitória ou até crônica, pois ressonam em circuitos de memória emocional. E se olharmos para doenças neurológicas, notamos que regiões como o hipotálamo lateral (onde se localizam neurônios de hipócretina/orexina) estão envolvidas tanto no controle de apetite quanto na regulação do ciclo sono-vigília. Na narcolepsia, deficiência de orexina resulta em excesso de sono diurno, já na insônia primária essa substância pode estar em desequilíbrio inverso, promovendo hiperativação.

Passado, presente e futuro se mesclam quando consideramos que tratamentos farmacológicos antigos (benzodiazepínicos) atuam de forma geral no GABA, enquanto terapias emergentes buscam alvo em receptores específicos de melatonina (MT1/MT2), antagonistas de CRH ou mesmo moduladores de orexina. O panorama abre caminho a um modelo mais granular de intervenção, focado em fenótipos — ou seja, marcadores objetivos de diferentes subtipos de insônia. Identificar biomarcadores no EEG, na resposta ao MSLT (teste de latência múltipla de sono) ou em perfis metabólicos pode permitir terapias personalizadas.

Aliás, lembre-se do que eu disse sobre a hiperativação: ela não é somente uma queixa subjetiva. Estudos mostram que pacientes com insônia apresentam aumento de atividade do sistema nervoso simpático (SNS), medido por frequência cardíaca elevada e níveis de catecolaminas no sangue. Esse estado de “alerta interno” é contraproducente para o adormecer e pode contribuir para comorbidades como depressão e ansiedade, além de risco cardiovascular elevado.

Outra perspectiva que merece destaque é a epigenética do sono. Fatores ambientais — estresse crônico, padrões irregulares de luz — podem alterar a metilação de genes relacionados ao ritmo circadiano, impactando a expressão de clock genes. Isso sugere que a insônia não é apenas disfunção temporária, mas pode envolver mudanças duradouras no genoma neuronal, de difícil reversão sem intervenções adequadas.

E onde entra nossa vida cotidiana? Rotinas irregulares, uso de eletrônicos antes de dormir e o estilo de vida 24/7 elevam o nível de ativação e perturbam a coordenação entre ritmo circadiano e homeostase do sono. Há, então, um componente comportamental tão influente quanto o biológico. Diminuir a exposição à luz azul, manter horários consistentes de sono e praticar técnicas de relaxamento são estratégias simples, mas poderosas para restabelecer o equilíbrio.

Voltando ao terreno das pesquisas: um ponto de inflexão futuro será o uso de neuroimagem integrada com machine learning para mapear padrões individuais de sono. Imagine um aplicativo que, ao cruzar dados de smartwatch com perfis de EEG domiciliar, indique o melhor momento para dormir ou sugira intervenções farmacológicas pontuais — tudo baseado em dados reais, não em protocolos genéricos.

Concluindo esta viagem pela neurobiologia do sono, fica claro que a complexidade do tema desafia simplicidades. Não há uma única porta de entrada para o descanso — são muitas chaves, trocadas em sincronia: relógio interno, contador de dívida de sono, neurotransmissores de estresse, circuitos emocionais, hormônios e nossas escolhas diárias. E, apesar de toda essa complexidade, o sono continua sendo um dos pilares mais fundamentais da saúde, influenciando cognição, humor, metabolismo e longevidade.

Se eu pudesse reforçar um ponto, seria este: compreender e respeitar nossos ciclos não é um luxo, é uma necessidade básica. Valorizar o sono é tão importante quanto alimentar-se bem ou praticar exercícios. E, quando surgirem dificuldades, buscar ajuda especializada, considerando tanto aspectos biológicos (como níveis de adenosina, disfunção do VLPO, desregulação de orexina) quanto comportamentais (higiene do sono, terapias cognitivas).

 


Referências:

Slow-wave sleep (SWS): frequentemente chamado de sono profundo , é o terceiro estágio do sono sem movimentos rápidos dos olhos (NREM), onde a atividade eletroencefalográfica é caracterizada por ondas delta lentas . https://en.wikipedia.org/wiki/Slow-wave_sleep

Rapid eye movement sleep (REM sleep or REMS): é uma fase única do sono em mamíferos (incluindo humanos ) e aves , caracterizada por movimentos rápidos e aleatórios dos olhos , acompanhados de baixo tônus muscular em todo o corpo e pela propensão do indivíduo a sonhar intensamente. As temperaturas do corpo e do cérebro aumentam durante o sono REM, e a temperatura da pele diminui para os valores mais baixos. https://en.wikipedia.org/wiki/Rapid_eye_movement_sleep

 Suprachiasmatic nucleus ou nuclei (SCN): é uma pequena região do cérebro no hipotálamo , situada diretamente acima do quiasma óptico . É responsável pela regulação dos ciclos do sono em animais. A recepção de entradas de luz de células ganglionares da retina fotossensíveis permite que ela coordene os relógios celulares subordinados do corpo e se adapte ao ambiente. As atividades neuronais e hormonais que ele gera regulam muitas funções corporais diferentes em um ciclo de aproximadamente 24 horas. https://en.wikipedia.org/wiki/Suprachiasmatic_nucleus

 Ventrolateral preoptic nucleus (VLPO): é um pequeno aglomerado de neurônios situado no hipotálamo anterior , logo acima e ao lado do quiasma óptico no cérebro de humanos e outros animais. https://en.wikipedia.org/wiki/Ventrolateral_preoptic_nucleus

 

 

Cérebro e energia

Energia e cérebro
Ouça o artigo:

Cheguei em casa depois de um daqueles dias em que tudo pareceu exigir mais do que eu tinha para dar. Queria só largar o corpo no sofá e deixar a televisão me distrair. Curiosamente, mesmo nesses momentos, a sensação de cansaço mental persiste, como se a cabeça continuasse rodando a toda velocidade. Durante muito tempo, acreditei que repouso seria igual a economia de energia cerebral, mas descobri que o quadro é bem mais intrigante. O cérebro, mesmo aparentemente inerte, consome quase tanta energia quanto em momentos de intensa atividade intelectual.

Quando falo de energia no cérebro, estou falando do que os biólogos chamam de custo metabólico da cognição. Ou seja, quanto “combustível” o cérebro precisa para manter suas funções, seja descansando ou resolvendo um problema matemático. Estudos recentes mostram que tarefas consideradas difíceis, aquelas que exigem atenção, memória ou raciocínio, usam só cerca de 5% mais energia do que quando estamos em repouso.(1) A primeira reação pode ser estranheza: não era para ficar cansado só de pensar em tanta coisa?

O segredo está em como o cérebro distribui seus gastos. Grande parte desse consumo energético é dedicada à manutenção de funções básicas, aquelas que operam nos bastidores. Enquanto a maioria dos pesquisadores se concentrou durante anos em processos como atenção, tomada de decisão e memória de trabalho, um novo olhar tem iluminado o papel essencial dos processos de fundo. O cérebro regula todo um conjunto de sistemas fisiológicos, alocando recursos e reagindo a demandas do ambiente, consciente ou inconscientemente.

Há quem diga que o cérebro serve apenas para pensar. Mas, do ponto de vista energético, ele é um órgão desenhado para gerenciar o corpo, coordenar órgãos, regular variáveis internas e ainda navegar um ambiente externo cheio de desafios. E tudo isso dentro dos limites impostos pela evolução, que atua como uma espécie de contadora exigente, cobrando cada gasto e cada desperdício.

Não raro, a sensação de fadiga mental não resulta de falta de energia propriamente dita, mas de uma tendência evolutiva a preservar recursos. A biologia opera segundo restrições severas, especialmente num órgão tão sofisticado e caro quanto o cérebro humano. Quando estudo o metabolismo neural, começo a enxergar a cognição como resultado de um ajuste fino entre as pressões evolutivas, os limites impostos pela energia disponível e as tarefas que precisamos desempenhar.

O cérebro é um consumidor voraz. Representa apenas cerca de 2% do peso corporal, mas exige 20% de toda a energia do corpo adulto. No caso dos bebês, esse percentual pode chegar a 50%. O combustível principal? A molécula chamada ATP (trifosfato de adenosina), produzida a partir de glicose e oxigênio, que chega às células nervosas por uma rede intrincada de capilares, algo em torno de 600 quilômetros de vasos, se alguém quisesse medir tudo. Uma vez dentro do neurônio, o ATP abastece as comunicações, sustentando disparos elétricos e a troca de sinais químicos entre células.

A manutenção do chamado potencial de membrana, que prepara cada neurônio para agir quando necessário, consome pelo menos metade da energia do cérebro. Medir diretamente o ATP em cérebros humanos é complicado e invasivo. Por isso, pesquisadores recorrem a métodos indiretos, como a tomografia por emissão de pósitrons (PET) para medir consumo de glicose, ou a ressonância magnética funcional (fMRI) para observar o fluxo sanguíneo. Essas técnicas revelam que o salto de consumo energético entre um cérebro em repouso e outro empenhado em tarefas é pequeno: cerca de 5%. Ou seja, o esforço extra para pensar é modesto se comparado ao trabalho constante de manutenção.

É interessante notar que, até meados dos anos 1990, cientistas encaravam a atividade cerebral em repouso como “ruído”, algo sem função clara. Aos poucos, perceberam que existe muito sinal útil nesse “ruído”. Um exemplo marcante é a chamada rede do modo padrão (default mode network), que entra em cena enquanto descansamos, imaginando futuros possíveis, relembrando o passado ou sentindo alguma dor que ficou esquecida. Essa rede mantém o cérebro ocupado em devaneios, reorganizando lembranças e simulando cenários.

Paralelamente, o cérebro faz um trabalho silencioso para garantir o equilíbrio corporal, o tal estado de homeostase. Controla temperatura, glicose, batimentos cardíacos, respiração e outros parâmetros fundamentais para manter tudo funcionando. Um pequeno deslize nesses controles pode trazer consequências sérias e rápidas.

Comecei a pensar, será que grande parte desse gasto não serve para algo além da simples regulação? Um pesquisador sugeriu que, de fato, o cérebro dedica seu metabolismo basal a prever o que vem pela frente. Em vez de apenas reagir, constrói modelos sofisticados do ambiente para antecipar demandas e alocar recursos antes mesmo de sentir a necessidade. Essa abordagem preditiva oferece vantagem adaptativa: preparar-se antes de o problema acontecer pode ser a diferença entre sobreviver e sucumbir.

Evolutivamente, essa capacidade preditiva fez toda a diferença. Um aumento de apenas 5% no consumo energético durante atividades cognitivas pode não parecer nada, mas, considerando o cérebro como um órgão altamente demandante, o acúmulo desse esforço ao longo dos dias se torna relevante. Imagine: se alguém mantivesse esse ritmo elevado por vinte dias seguidos, gastaria a energia equivalente a um dia inteiro só pensando. Para populações que viviam sob restrição alimentar, esse detalhe era vital, poderia separar vida e morte.

Fiquei refletindo sobre isso outro dia, lembrando daqueles momentos em que o cansaço mental parecia desproporcional ao esforço real. Agora faz sentido: nosso cérebro possui mecanismos automáticos que nos freiam, ativando sensações de fadiga para evitar gasto excessivo. É uma herança dos tempos de escassez, quando cada caloria era disputada.

Outro ponto fascinante: a própria transmissão de informação no cérebro é limitada por essas regras energéticas. Um neurônio, em teoria, poderia disparar até 500 vezes por segundo. Porém, se todos os neurônios adotassem esse ritmo frenético, o sistema colapsaria. O ritmo ótimo de transmissão, aquele em que ainda é possível distinguir as mensagens sem perder a clareza, fica em torno de 250 disparos por segundo. Na prática, nossos neurônios funcionam numa média de apenas 4 disparos por segundo, bem menos do que seria possível.

O mais curioso é que muitas dessas transmissões nem chegam a passar adiante. Mesmo quando um impulso elétrico alcança a sinapse, só cerca de 20% das tentativas resultam em comunicação com o neurônio vizinho. Se o objetivo fosse maximizar a quantidade de informação transmitida, a eficiência deveria ser maior, não? Mas o cérebro não busca esse tipo de maximização. Ele quer, acima de tudo, economizar ATP, otimizar a quantidade de informação transmitida por unidade de energia, e não simplesmente transmitir tudo que pode.

Essa equação muda nossa compreensão do cansaço mental. A sensação de esgotamento depois de um dia de atenção intensa está menos relacionada à ausência de energia, e mais à ativação de mecanismos internos para limitar o gasto. Um lembrete constante do quanto nosso sistema nervoso evoluiu para equilibrar flexibilidade, inovação comportamental e restrição metabólica.

Enquanto escrevo destaco um ponto importante: grande parte do que chamamos de “atividade cerebral” acontece sem que percebamos. Pensar consome energia, sim, mas é a manutenção silenciosa, os ajustes automáticos, o monitoramento constante do corpo e do ambiente que levam o maior pedaço desse orçamento energético.

O cérebro humano é um exemplo brilhante de negociação evolutiva. Carregamos na cabeça um órgão de altíssimo custo, capaz de invenção, previsão e adaptação, mas que opera dentro de limites rígidos impostos por sua própria biologia. A energia investida no pensamento é real, embora menor do que a intuição sugere. É a soma das pequenas diferenças, multiplicadas pela rotina diária, que moldou nossa espécie e ainda determina nossos limites.

 


Referência:

1 - The metabolic costs of cognition:  https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(24)00319-X

Tecnologia usa tatuagem eletrônica para medir atividade mental

E-tatuagem
Ouça o artigo:

Quando se fala em equilíbrio mental, parece óbvio que tanto o excesso quanto a falta de estímulo podem ser prejudiciais. O cérebro humano, afinal, nunca foi bom em lidar com extremos, o tédio abre portas para distrações, enquanto a sobrecarga cognitiva pode minar decisões críticas. Uma das perguntas mais recorrentes na psicologia do trabalho é: existe uma maneira objetiva de saber quando o cérebro está prestes a ultrapassar esse limite? Confesso que já pensei nisso ao ver profissionais altamente exigidos, como controladores de voo, encarando jornadas em que um segundo de descuido custa caro.

Nos últimos anos, a tecnologia tem tentado resolver o desafio de medir o chamado “workload mental”, ou "carga mental", de forma objetiva e confortável. Tradicionalmente, o monitoramento cerebral se faz por meio do EEG, ou eletroencefalografia, que capta os sinais elétricos do cérebro por eletrodos presos ao couro cabeludo. O problema? O EEG tradicional é complicado, cheio de fios, incômodo, nada adaptado para o cotidiano de quem precisa estar em movimento. Surgem então alternativas como o EOG (eletrooculografia), medindo movimentos oculares para decifrar quanto esforço mental alguém está empregando.

Recentemente, um grupo da Universidade do Texas em Austin apresentou um conceito inovador: uma e-tatuagem ultrafina, sem fios, capaz de captar tanto EEG quanto EOG diretamente da testa. Na prática, imagine um adesivo temporário, colado na pele, quase invisível e flexível, que transmite dados via Bluetooth enquanto a pessoa executa suas tarefas, seja caminhando, correndo ou sentada diante de múltiplas telas. A e-tatuagem une uma camada descartável de eletrodos com um circuito flexível reutilizável, equipado com bateria. Os eletrodos em forma de serpentina, feitos de poliuretano grafitado, proporcionam condutividade e aderência, a tal ponto que o sinal permanece estável mesmo com movimentos bruscos.

Testes iniciais com voluntários trouxeram resultados animadores. O dispositivo captou com precisão as ondas cerebrais alfa enquanto um participante abria e fechava os olhos, algo essencial para aferir o funcionamento neural básico. Surpreendentemente, os dados se equipararam ao padrão de referência obtido com equipamentos de EEG profissionais, daqueles à base de gel condutor. Isso levanta uma questão: será que dispositivos descartáveis, portáteis e baratos poderiam, algum dia, substituir os métodos tradicionais em ambientes clínicos ou ocupacionais?

A equipe resolveu ir além, aplicando a e-tatuagem em seis participantes submetidos a uma tarefa de memória visuoespacial, que ia ficando mais difícil ao longo dos minutos. O objetivo era analisar como o cérebro reagia em tempo real a desafios cognitivos crescentes. Foram extraídas, dos sinais captados, diferentes bandas de frequência: delta, teta, alfa, beta e gama (cada uma relacionada a diferentes estados mentais como repouso, atenção, concentração, fadiga). Observou-se que, conforme a tarefa se complicava, aumentava a atividade nas bandas delta e teta, indicativo clássico de esforço cognitivo mais intenso. Já as bandas alfa e beta, associadas à prontidão e ao relaxamento, caíam, sugerindo fadiga mental. Esse padrão é uma assinatura clássica de sobrecarga.

Achei interessante como o grupo apostou em aprendizado de máquina, ou machine learning, para criar um modelo preditivo: o algoritmo foi treinado nos dados de EEG e EOG de cada voluntário, aprendendo a estimar o grau de carga mental a partir do padrão das ondas cerebrais e dos movimentos oculares. O sistema demonstrou alta precisão, apontando que é possível, sim, decifrar em tempo real o estado mental de cada indivíduo com um simples adesivo tecnológico. Às vezes me pego pensando que estamos a um passo de um cenário em que decisões críticas como de pilotos, motoristas, cirurgiões, poderão ser acompanhadas e, quem sabe, até ajustadas por sistemas inteligentes em tempo real.

Os próprios autores reconhecem os desafios envolvidos: monitorar sinais do cérebro na testa exige sensores que sejam estáveis, não invasivos e invisíveis para o usuário. A inovação desse estudo está justamente na solução de baixo consumo, baixo ruído e alta portabilidade, uma combinação difícil de encontrar. E, para não esquecer, a questão da individualidade, cada cérebro tem seu ritmo, sua tolerância à fadiga, sua própria assinatura elétrica. A personalização desses modelos será o próximo passo natural.

Fico pensando como o monitoramento do esforço físico já é parte do cotidiano e como smartwatches medem nossos batimentos, rastreadores indicam quantos passos demos, sensores calculam o consumo calórico. Mas, até agora, o esforço mental permanecia quase invisível, restrito a autopercepção ou, na melhor das hipóteses, a questionários subjetivos. O surgimento dessas e-tatuagens pode transformar o modo como empresas, hospitais, transportadoras e até escolas lidam com a saúde mental de seus integrantes.

Em meio a tanta tecnologia, não deixa de ser curioso imaginar que um adesivo quase imperceptível, colado à pele, consiga traduzir o cansaço do cérebro em números e gráficos. Eu tive algumas reflexões ao ler sobre o tema: será que, um dia, teremos dashboards em tempo real mostrando o “limite” do cérebro, como quem consulta a bateria do celular? Eu acredito que sim. 



Referências:

A wireless forehead e-tattoo for mental workload estimation: https://www.cell.com/device/fulltext/S2666-9986(25)00094-8

Glicose, cetonas, memória e o que sustenta o cérebro em queda

CEtonas no corpo
Ouça o artigo:

Imagine que o envelhecimento cerebral não é apenas uma linha reta rumo ao declínio, mas uma curva sinuosa, cheia de desvios, curvas e até pontos críticos em que as coisas mudam de direção. A ciência, há décadas, persegue respostas para uma questão central: o que realmente impulsiona o envelhecimento do cérebro? Por que algumas pessoas mantêm a clareza mental até idades avançadas, enquanto outras perdem rapidamente funções cognitivas? E, mais instigante ainda: seria possível intervir nesse processo antes que o ponto de virada chegue — antes que as mudanças se tornem irreversíveis?

Comecei a pensar mais profundamente sobre isso depois de ler sobre um experimento simples: um grupo de pessoas de meia-idade tomou um suplemento que eleva os níveis de corpos cetônicos no sangue — e, surpreendentemente, os exames mostraram um efeito imediato de restauração da estabilidade das redes cerebrais. Esse efeito, porém, desapareceu nos idosos. A pergunta então ficou ecoando: existiria uma janela de tempo em que o cérebro é especialmente sensível a intervenções metabólicas?

Para explorar esse tema, preciso abrir um parêntese rápido e explicar dois conceitos técnicos essenciais. Primeiro, falo de “homeostase metabólica”, que é a capacidade do corpo (e do cérebro) de manter seus processos energéticos sob controle, mesmo diante de mudanças e desafios. Segundo, entra em cena o “transporte de glicose”, responsável por abastecer neurônios com sua principal fonte de energia. Mas, ao contrário do que se imagina, esse transporte não é igual para todos os neurônios — alguns dependem de mecanismos sensíveis à insulina, enquanto outros usam caminhos independentes. Aqui, o protagonista é o transportador GLUT4, que exige insulina para funcionar.

E por que isso importa? Porque, com a idade, a resistência à insulina aumenta silenciosamente em várias partes do corpo, inclusive no cérebro. Esse fenômeno é chamado de “resistência neuronal à insulina”. Neurônios resistentes à insulina simplesmente não conseguem absorver glicose de maneira eficiente, entrando em um estado de “hipometabolismo” — basicamente, um modo de economia forçada, com menos energia disponível para as tarefas do dia. O que a ciência começou a perceber é que essa queda no metabolismo antecede sintomas clínicos de doenças neurodegenerativas, como Alzheimer. O mais curioso é que, nessas fases iniciais, as mudanças já aparecem nos exames funcionais, como fMRI (ressonância magnética funcional) ou EEG (eletroencefalograma), muito antes de qualquer sintoma perceptível no cotidiano
.
Talvez agora você esteja se perguntando: se o problema é a energia, não seria possível fornecer uma fonte alternativa? É aqui que entram os corpos cetônicos. Eles podem ser produzidos naturalmente pelo corpo durante o jejum ou dietas com baixo teor de carboidrato, ou ainda ser fornecidos em suplementos específicos. Os corpos cetônicos — como o beta-hidroxibutirato — conseguem alimentar os neurônios mesmo quando há resistência à insulina, porque usam um transportador chamado MCT2, que não depende de insulina para funcionar. É um atalho bioquímico, uma rota de fuga para o neurônio faminto.

Ao investigar o padrão do envelhecimento cerebral, pesquisadores descobriram algo fascinante: a trajetória não é linear, mas sim sigmoidal — lembra uma curva em “S”. Eles identificaram pontos críticos nessa curva, como o início da desestabilização das redes cerebrais por volta dos 43 a 47 anos, o ponto de máxima aceleração dessa instabilidade entre os 60 e 67 anos e, por fim, um platô, quando a rede já está bem menos estável. Esses marcos foram replicados em grandes bancos de dados populacionais, usando exames funcionais em dezenas de milhares de participantes, de jovens adultos a idosos. Nesses estudos, o aumento da instabilidade das redes cerebrais coincidiu de maneira impressionante com um aumento nos níveis de HbA1c — um marcador de glicemia cronicamente elevada, ligado à resistência à insulina. Interessante também perceber que, enquanto os marcadores metabólicos disparam já no início desse processo, os problemas vasculares e inflamatórios aparecem mais adiante, na curva.

A reflexão aqui é inevitável: muitos modelos antigos de envelhecimento sugeriam que tudo era uma mistura de pequenos desgastes acumulados, como oxidação, inflamação e lesão vascular. Agora, começa a emergir a ideia de que a quebra da homeostase metabólica — e especialmente da resposta à insulina nos neurônios — é o grande gatilho. Um lapso de memória (me distraí aqui, porque acabei pensando em quantas vezes já ouvi médicos falando do cérebro como “órgão consumidor de glicose”, mas quase nunca mencionando que esse consumo pode travar).

Quando os pesquisadores analisaram padrões de expressão gênica em diferentes regiões do cérebro, cruzando com o ritmo do envelhecimento funcional dessas áreas, encontraram uma correlação forte entre as regiões que envelhecem mais rápido e a presença do GLUT4. E, curiosamente, regiões com maior expressão de MCT2 (o transportador de corpos cetônicos) mostraram menos vulnerabilidade. Em outras palavras, parece que existe uma espécie de “escudo protetor” para os neurônios capazes de usar corpos cetônicos. O gene alelo apolipoproteína, conhecido por seu papel no transporte de lipídios e como fator de risco para Alzheimer, também apareceu nesse cenário — como se houvesse uma conversa entre metabolismo de glicose, lipídios e cetonas nos bastidores do envelhecimento cerebral.

Eu tive algumas reflexões, quase como quem tropeça numa ideia no meio do caminho. Se já sabemos que existe essa janela crítica entre os 40 e 60 anos, por que não existem políticas de saúde pública voltadas para intervenções metabólicas nessa faixa etária? Seria preciso esperar pelos primeiros sintomas de declínio ou poderíamos, de forma proativa, propor estratégias de prevenção baseadas em metabolismo cerebral? A própria experiência pessoal me faz pensar que a maioria das pessoas só se preocupa com dieta ou atividade física quando sente o peso do cansaço mental ou os lapsos de memória aumentam. Mas o corpo e o cérebro já estavam mudando muito antes disso.

Retomando a linha de raciocínio, há uma questão técnica que sempre gera discussão: como isolar o impacto do metabolismo do cérebro, sem confundir com fatores vasculares ou inflamatórios? Os estudos resolveram isso controlando rigorosamente as variáveis, usando grandes amostras e métodos de análise funcional que permitem separar os efeitos. Assim, foi possível mostrar que, no início do processo de envelhecimento cerebral, é o metabolismo que muda primeiro. Só depois vêm as alterações vasculares e, por fim, as inflamatórias.

Outro ponto curioso: na hora de testar intervenções com corpos cetônicos, os pesquisadores descobriram que o efeito positivo é maior justamente durante o período de transição metabólica, aquela janela entre os 40 e 59 anos. Depois dos 60, o benefício desaparece. Não porque o suplemento não chegue ao cérebro, mas porque os neurônios já perderam a capacidade de usá-lo de forma eficiente. Chega um ponto em que o sistema deixa de “curvar” e passa a “quebrar”. Essa analogia do "curvar antes de quebrar" é muito usada na engenharia, mas aqui encaixa perfeitamente: os neurônios suportam o estresse metabólico até certo limite; passado esse ponto, as alterações tornam-se irreversíveis.

Reforçando o ponto anterior, o estudo sugere que uma intervenção precoce — especialmente antes da perda irreversível dos neurônios — pode reverter boa parte da instabilidade das redes cerebrais. Em outras palavras, existe sim uma “janela de oportunidade”, mas ela não fica aberta para sempre.

O próximo passo é entender por que algumas pessoas atravessam essa janela sem grandes problemas, enquanto outras não. Seriam fatores genéticos, ambientais, estilo de vida, ou uma combinação de todos eles? A expressão do gene apolipoproteína, por exemplo, pode aumentar o risco de declínio cognitivo acelerado, mas só em alguns contextos. O ambiente alimentar e a frequência de picos glicêmicos ao longo da vida provavelmente modulam essa vulnerabilidade.

A reflexão que faço agora é: quantos de nós paramos para pensar que as escolhas alimentares do cotidiano — excesso de açúcar, picos de insulina, falta de jejum metabólico — podem estar “programando” nosso cérebro para envelhecer mais rápido? Talvez a resposta não esteja em medicamentos caros, mas em estratégias simples de manutenção do metabolismo cerebral, como períodos de restrição alimentar, maior consumo de gorduras saudáveis, e até mesmo, em alguns casos, o uso planejado de suplementos cetônicos.

Voltando à ciência, há um desafio metodológico importante. Grande parte dos estudos anteriores analisava pessoas já com sintomas ou diagnóstico de doenças neurodegenerativas. Isso limita a capacidade de diferenciar causas de consequências. Quando o foco se volta para adultos saudáveis, principalmente antes dos 60 anos, torna-se possível enxergar o processo de envelhecimento como algo dinâmico, cheio de idas e vindas, e não como uma sentença inevitável. E, sim, os métodos de análise funcional do cérebro — como a estabilidade das redes neurais — podem indicar alterações anos antes do surgimento dos sintomas clássicos.

Uma questão que é bom destacar é a interação entre metabolismo, inflamação e função vascular. Esses sistemas não operam isoladamente. O envelhecimento acelera ciclos de retroalimentação negativa, em que o metabolismo prejudicado agrava a inflamação, que, por sua vez, compromete os vasos sanguíneos, criando um círculo vicioso. O grande problema é interromper esse ciclo no ponto certo, antes que o dano se torne permanente. Isso reforça a importância de intervenções multifatoriais, mas sem perder o foco: atacar o metabolismo pode ser a chave inicial para evitar o desmoronamento dos demais sistemas.

Ao juntar todas essas peças, fica claro que o envelhecimento cerebral é menos uma sequência de eventos previsíveis e mais um processo de transições abruptas, marcadas por pontos críticos. Entender e reconhecer esses pontos pode nos dar a chance de agir antes que seja tarde demais. E, embora eu me pegue repetindo essa ideia, talvez por insegurança ou insistência, não custa lembrar: o futuro das estratégias para manter o cérebro saudável talvez esteja menos em intervenções tardias e mais na identificação precoce da janela crítica de intervenção metabólica. Pensar nisso é, de certo modo, cuidar do próprio futuro.

 


Referências:

Discrete brain areas express the insulin-responsive glucose transporter GLUT4 - Áreas cerebrais discretas expressam o transportador de glicose sensível à insulina GLUT4: Esse estudo mapeou regiões específicas do cérebro que expressam o GLUT4, sugerindo que certos neurônios dependem diretamente da insulina para absorver glicose, o que os torna mais vulneráveis ao declínio metabólico com o envelhecimento. https://pubmed.ncbi.nlm.nih.gov/8737666/

 Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system - Localização imunocitoquímica do transportador de glicose 4 (GLUT4), sensível à insulina, no sistema nervoso central de ratos: Este trabalho mostra que o GLUT4 está presente em diversas áreas do cérebro de ratos, reforçando a ideia de que a captação de glicose por neurônios pode depender da sensibilidade à insulina — um ponto central na hipótese da “diabetes tipo 3” no Alzheimer. https://pubmed.ncbi.nlm.nih.gov/9741479/

 Brain fuel metabolism, aging, and Alzheimer's disease - Metabolismo energético cerebral, envelhecimento e doença de Alzheimer: O artigo revisa como o declínio na capacidade do cérebro de utilizar glicose precede sintomas de Alzheimer e discute o potencial uso terapêutico de fontes alternativas de energia, como corpos cetônicos, para retardar o envelhecimento cerebral. https://pubmed.ncbi.nlm.nih.gov/21035308/

Use of Functional Magnetic Resonance Imaging in the Early Identification of Alzheimer’s Disease - Uso da ressonância magnética funcional na identificação precoce da doença de Alzheimer: A fMRI é apresentada como uma ferramenta promissora para detectar alterações na conectividade cerebral antes mesmo do surgimento de sintomas clínicos — uma base importante para estudar como a instabilidade das redes cerebrais pode sinalizar o início do declínio cognitivo. https://pmc.ncbi.nlm.nih.gov/articles/PMC2084460/

The potential of functional MRI as a biomarker in early Alzheimer’s disease - O potencial da fMRI como biomarcador na fase inicial da doença de Alzheimer: Explora como a instabilidade funcional em redes cerebrais específicas pode servir como um marcador precoce e confiável da progressão do Alzheimer — tema que também aparece nos estudos sobre intervenção com cetose em fases críticas da meia-idade. https://pmc.ncbi.nlm.nih.gov/articles/PMC3233699/

 Ketosis regulates K+ ion channels, strengthening brain-wide signaling disrupted by age Open Access - A cetose regula canais de íons K⁺, fortalecendo a sinalização cerebral ampla prejudicada pela idade: Um estudo inovador que mostra como corpos cetônicos restauram a função neuronal ao reequilibrar canais iônicos fundamentais para a sincronia em larga escala das redes neurais — sugerindo um mecanismo celular para o “escudo protetor” contra o envelhecimento cerebral. https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00163/120749/Ketosis-regulates-K-ion-channels-strengthening

 D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance  - O D-β-hidroxibutirato estabiliza o circuito CA3-CA1 do hipocampo durante resistência aguda à insulina: Mostra como a presença de corpos cetônicos estabiliza as conexões neurais mesmo sob condições de resistência à insulina, explicando por que regiões que usam cetonas — via transportadores como o MCT2 — apresentam maior resiliência no envelhecimento. https://pubmed.ncbi.nlm.nih.gov/37662316/

 Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families  - Dose gênica do alelo tipo 4 da apolipoproteína E e o risco de Alzheimer em famílias com início tardio: Um dos estudos clássicos que estabelecem a associação entre o gene APOE4 e maior risco de Alzheimer, indicando um elo genético entre metabolismo lipídico e neurodegeneração — peça-chave na “conversa metabólica” entre glicose, lipídios e cetonas no cérebro que envelhece. https://pubmed.ncbi.nlm.nih.gov/8346443/

Exercícios físicos e aspectos cerebrais, uma jornada para entender

Exercício físico e cérebro
Ouça o artigo:

Eu me recordo da primeira vez em que percebi como o corpo e a mente dialogam de forma surpreendente. Ao incluir caminhadas regulares pela manhã, notei um vigor inesperado ao enfrentar tarefas complexas durante o dia. As leituras, o trabalho que eu tenho, tudo isso melhorou quando eu comecei a fazer uma caminhada. A respiração ritmada enquanto meus pés tocavam o chão parecia abrir espaço para ideias mais claras, como se cada passo também ativasse caminhos internos do meu cérebro. Essa sensação me convidou a investigar o que estava acontecendo com o meu corpo. Um simples ato de movimentar otimizar processos cerebrais ligados a memória e ao aprendizado.

Logo ficou evidente que o exercício não se resume a queimar calorias. Existe uma confluência de fenômenos biológicos que remodelam estruturas cerebrais também, principalmente em regiões essenciais para orientações espaciais. Quando corro, sinto que meu cérebro, ou regiões do tipo hipocampo, um laboratório íntimo onde nascem e se consolidam recordações de rotas e mapas mentais, recebe estímulos capazes de tornar essas lembranças mais precisas. É curioso como, depois de um período de prática regular, encontro menor dificuldade em memorizar trajetos novos. Mas será que isso é real? Ou pode ser algo relacionado a placebo? Um estudo bem interessante(1) que encontrei sobre como correr melhora a neurogênese, o aprendizado de longo prazo em ratos e isso me fez questionar como isso se reflete em nós humanos.

Observando pessoas de diferentes idades, vi adultos mais velhos relatarem facilidade ao lembrar da localização de objetos em casa. Muitos confessaram que, mesmo sem muita disciplina em academias, ao caminhar diariamente começaram a perceber melhorias nesse tipo de memória. E isso realmente faz sentindo, existe bastante estudo que relaciona a melhora cognitiva em idosos, tanto exercícios aeróbicos(2), como exercícios de resistência(3). Percebi ainda que, quando incluí rotinas de resistência muscular, como exercícios com pesos leves, surgiu outra dimensão de benefícios. A combinação entre atividades aeróbicas e de força parece trabalhar vias distintas, mas complementares, do cérebro, dando mais consistência às minhas impressões de espaço e orientação.

Durante uma sessão de treino com pesos, senti meus músculos responderem imediatamente, mas notei também um efeito mais sutil que se manifestou dias depois. Quando retornei ao estudo de matemática que gosto de passar meu tempo, meu cérebro criou uma facilidade impressionante de fazer cálculos. Foi como se aquela sessão de força tivesse ativado a produção de substâncias que promovem o crescimento de neurônios. E continuo tentando refletir, será que é impressão minha? Eu observei em um estudo bem interessante sobre o fator de crescimento semelhante à insulina 1 ou também chamado de IGF-1, ele aumenta o número de novos neurônios no hipocampo, por exercício(4)

Pesquisando mais um pouco, descobri que certas moléculas durante o esforço físico funcionam como mensageiras. Elas estimulam a formação de novas conexões sinápticas e até o nascimento de células nervosas em áreas específicas.(5) Quando entendo o funcionamento desses mensageiros, queda por queda de suor ganha um novo sentido. Cada gota se converte em um impulso para fortalecer a rede neuronal responsável por aprender e memorizar. E isso é maravilhoso. Cada novo treino você está se protegendo de mal de Alzheimer.

Em treinos de corrida, algo me chamou a atenção, ao reduzir a velocidade nas últimas voltas, meu ritmo cardíaco mantinha-se elevado, mas meu cérebro parecia mais alerta. Passei a usar esse momento para revisar mentalmente conceitos que havia aprendido no dia anterior. A sensação era de que aquele estado pós-treino criava uma janela ideal para consolidar informações. Percebi que não era apenas um sentimento subjetivo, talvez minha dopamina, noradrenalina, e serotonina estivesse aumentando, em alguns estudos(6) existem novos insights para como ele pode estimular processos cerebrais.

Conversei com outras pessoas que faziam corridas ou praticavam alguns exercícios que tinham horários variados. Muitos preferiam correr de manhã cedo, antes de qualquer atividade mental intensa. Outros reservavam finais de tarde para combinar estudo e exercício. Alguns deles comentaram comigo terem notado ganhos em memorização, de números ou no melhor aprendizado de idiomas. Mas eles não deram muita importância a isso. Poderia ter sido um conjunto de outros fatores, não é? Mas isso é muito interessante de refletir também, e pensar sobre. Pode ser que exista uma conexão entre corpo, movimento e consolidação de dados no cérebro.

A disciplina de manter rotina de treinos revelou-se tão vantajosa para minhas recordações de cada coisa que passou em minha vida quanto para tarefas diárias. Lembro-me de viagens que fiz antigamente, como de tarefas de semanas atrás. É algo bastante interessante de pode analisar, as ruas e as casas ficaram um pouco mais nítida para mim. Foi estranho descobrir que, mesmo diante de cantos complexos, meu cérebro elaborava mapas internos que me guiavam com segurança.

Dentro de mim cresceu a convicção de que cada modalidade de exercício traz um efeito singular. Mas é claro, tem alguns estudos interessante que pode até sugerir algumas coisas. A corrida oferece estímulos aeróbicos que favorecem a irrigação sanguínea cerebral, fortalecendo vasos e ampliando o aporte de oxigênio.(6) A musculação, por sua vez, ativa circuitos de liberação de fatores de crescimento capazes de promover adaptações neurais.(7) Ao mesclar ambos, senti-me beneficiado em vários níveis, como se meu cérebro se alimentasse de sangue renovado e de sinais bioquímicos potentes.

Ao compartilhar essas impressões com amigos, vi alguns se surpreenderem ao perceber que não existia contraste entre praticar atividade física e desenvolver habilidades cognitivas. Eles pensavam que o exercício tornaria o corpo saudável, mas não imaginavam as repercussões no cérebro. Talvez até imaginavam, mas não focavam nisso, porque o corpo saudável, o cérebro também fica saudável.

Em um projeto pessoal, decidi documentar minhas rotinas de treino e, ao final de cada semana, fazia um breve relato das melhores recordações daquele período. Descobri que, nas semanas em que mantinha consistência de treinos, as lembranças de detalhes do cotidiano apareciam com mais nitidez. Era curioso notar que até pequenos fatos, como paisagens observadas em percursos urbanos, ficavam presos na minha mente com traços mais nítidos.

Enquanto desenvolvia esses hábitos, percebi que o bem-estar emocional também evoluía. Mas isso é um pouco nítido, todos nós sabemos que exercícios físicos podem nos proporcionar uma sensação de bem-estar. Com uma sensação meio que de preocupação, a melhor coisa era fazer um trajeto pelas ruas que já sentia uma ativação de circuitos interiores que filtrava as tensões. E é claro que no retorno, eu sentia calma e tinha clareza sobre problemas antes nebulosos. A relação entre movimento e bem-estar cognitivo se expressava não apenas em memórias espaciais, mas em estados equilibrados.

Com o passar dos meses, entendi que a prática deveria ser constante para manter ganhos. Quando eu ficava semanas sem me exercitar, notava perda de precisão em lembranças espaciais. O cérebro parecia exigir estímulos regulares para sustentar as estruturas neurais criadas. Voltar aos treinos devolvia o vigor mental e reacendia o prazer de percorrer novas rotas cognitivas. E isso era o mais interessante.

Descobri que, mesmo em dias de menor disposição, um breve período de bicicleta ergométrica por quinze minutos ou menos pode reativar circuitos que promovem memória e clareza. Esse conhecimento transformou minha rotina, pois passei a usar sessões rápidas de exercício como forma de retomar o ritmo mental. A noção de que pequenos gestos trazem retornos significativos reforçou meu compromisso com o cuidado corporal.

Hoje sei que o exercício físico funciona como um tipo de catalisador de neuroplasticidade, sem depender de recurso externo além do próprio corpo em movimento. Cada gota de suor contribui para a remodelagem de circuitos que sustentam o aprendizado, a memória e o equilíbrio emocional. E isso se torna fascinante. É claro que muitos vão focar mais em bem-estar todo dos exercícios, mas nesta postagem eu queria relacionar mais as minhas experiências com os aspectos cerebrais. Se você procurar mais artigos vai encontrar ainda mais pesquisas relacionadas. E mesmo que se você só focar em bem-estar dos exercícios, vai ganhar de bônus um melhor benefício cognitivo.


Referências:

1 - Exercise enhances learning and hippocampal neurogenesis in aged mice  - Estudo demonstra que exercícios aumenta a neurogênese do hipocampo contribuindo para a melhora do aprendizado. https://pubmed.ncbi.nlm.nih.gov/16177036/

2 - Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms - Este estudo demonstra que exercícios aeróbicos e de resistência melhoram a memória espacial por meio de diferentes mecanismos moleculares. https://pubmed.ncbi.nlm.nih.gov/22155655/

3 - The impact of resistance exercise on the cognitive function of the elderly - Esta pesquisa avalia como o treinamento de resistência afeta a função cognitiva em idosos. https://pubmed.ncbi.nlm.nih.gov/17762374/

4 - Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus - Este estudo investiga como o IGF-I circulante medeia o aumento de novos neurônios no hipocampo adulto induzido pelo exercício. https://pubmed.ncbi.nlm.nih.gov/11222653/

5 - Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition - Este artigo explora como o BDNF no hipocampo influencia a eficácia do exercício na plasticidade sináptica e cognição. https://pubmed.ncbi.nlm.nih.gov/15548201/

6 - Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat - Este estudo mostra que exercícios prolongados induzem angiogênese e aumentam o volume sanguíneo cerebral no córtex motor primário de ratos. https://pubmed.ncbi.nlm.nih.gov/12654355/

7 - Effects of resistance training on insulin-like growth factor-I and IGF binding proteins - Esta pesquisa analisa os efeitos do treinamento de resistência nos níveis de IGF-I e suas proteínas ligantes. https://pubmed.ncbi.nlm.nih.gov/11283443/


Como o ritmo circadiano foi desenvolvido a bilhões de anos atrás

Rítmo Circadiano
Ouça o artigo:

Já houve dias em que eu acordava sem motivo algum ás 5 da manhã, mesmo tendo ido dormir tardiamente. Não era ansiedade, tampouco insônia. Era como se algo muito antigo em mim dissesse que aquele era o momento certo de abrir os olhos. E durante anos, eu ignorei essa possibilidade de que talvez não fosse apenas o costume ou a rotina que me puxava do sono. Foi após ler sobre relógios biológicos que algo começou a fazer sentido para mim. Mas o que me deixou realmente intrigado foi descobrir que talvez esse "relógio" não seja apenas um ajuste moderno de seres complexos, mas um mecanismo muito mais antigo. Tão antigo quanto a própria vida que respira oxigênio.

É fascinante imaginar que, mesmo antes dos animais com cérebros, antes dos organismos multicelulares, já existiam ritmos que orientavam a vida. O artigo que li(1) recentemente trouxe um panorama que fez tudo isso parecer ainda mais profundo. Ele aponta que o relógio circadiano pode ter começado a bater há cerca de 2,5 bilhões de anos, no exato momento em que a Terra passou por uma de suas maiores transformações: a chamada Grande Oxidação.

Essa expressão, “Grande Oxidação”(2), soa quase como um evento épico da história natural. E de fato foi. Foi quando os primeiros organismos fotossintetizantes começaram a produzir oxigênio em quantidades tão grandes que modificaram completamente a composição da atmosfera terrestre. Isso não só mudou o planeta, aniquilando uma imensidão de formas de vida que não toleravam oxigênio, como também criou uma pressão evolutiva que exigia adaptação aos novos desafios bioquímicos. Afinal, o oxigênio, apesar de vital, também gera resíduos perigosos, como as espécies reativas de oxigênio, aquelas moléculas que podem literalmente enferrujar o que encontram dentro das células.

E foi nesse contexto que algo extraordinário pode ter surgido: uma forma de ritmo interno, baseado na capacidade de lidar com esses resíduos tóxicos. Não era um relógio feito de genes que se ligavam e desligavam em sequência, como nos modelos tradicionais, era algo ainda mais primitivo: uma oscilação no estado de oxidação de proteínas chamadas peroxirredoxinas(3), que neutralizam substâncias como o peróxido de hidrogênio.

Essas oscilações acontecem até mesmo em células que não possuem núcleo. Células que não têm DNA ativo, como as hemácias humanas. Mesmo sem um centro de comando genético, elas conseguem manter esse ritmo. Isso desmonta a ideia de que o relógio biológico só existe em organismos mais complexos, ou que depende exclusivamente da maquinaria genética. Há um pulso bioquímico mais profundo, que sobrevive em praticamente todos os seres vivos, do mais simples ao mais complexo.

Sempre se imaginou que os relógios circadianos fossem construções genéticas elaboradas, como as que existem nos animais, nas plantas e em certos fungos. Mas o fato de que organismos tão distintos quanto arqueias, cianobactérias, plantas e humanos compartilham esse tipo de oscilação em suas peroxirredoxinas sugere que talvez o relógio mais antigo não tenha sido genético, mas sim químico. Um marcador de tempo construído não com letras de DNA, mas com elétrons e estados de oxidação.

Quando li que essas oscilações persistem mesmo em mutantes genéticos em que o relógio convencional está desligado, fiquei ainda mais curioso. Existe algo muito mais profundo do que imaginávamos. Mesmo quando o relógio genético silencia, o ciclo da peroxirredoxina continua a rodar. Eles parecem ser sistemas paralelos, e ainda que possam influenciar mutualmente, nenhum depende totalmente do outro para existir. Há uma espécie de redundância, um plano B evolutivo para garantir que o organismo mantenha algum senso de tempo interno.

O mais interessante disso tudo é pensar que talvez nós, como organismos, não sejamos apenas seres vivos que se adaptaram ao ambiente, mas que carregamos dentro de nós traços bioquímicos de eventos que moldaram o próprio planeta. Que ao respirar, ao metabolizar, ao existir, cada célula em nós ainda dançamos ao ritmo de um ciclo ancestral, esculpido pelo movimento do sol e pelas reações químicas que vieram com o oxigênio.

O relógio baseado em peroxirredoxinas funciona como um lembrete de que o tempo biológico não nasceu com os mamíferos, nem com os humanos. Ele pode ser tão antigo quanto a própria vida aeróbica. E quando se olha para os detalhes bioquímicos dessa proteína, nota-se que seu papel é exatamente o de “limpeza”, o de manter as células protegidas contra os danos provocados por oxigênio reativo. Sua função não é medir o tempo por si só, mas garantir que a célula esteja preparada para os ciclos de estresse oxidativo que, curiosamente, seguem o ritmo do dia e da noite.(4)

Quando o oxigênio começou a se acumular na atmosfera, a luz do sol passou a interferir ainda mais nos processos celulares. A fotossíntese, não apenas produzia energia, mas também criava resíduos perigosos. Ter um sistema que pudesse prever esses momentos e preparar o organismo para lidar com eles se tornou uma vantagem evolutiva enorme. Não é coincidência que muitos dos genes ligados ao metabolismo e à resposta imune nos animais estejam sob controle do relógio circadiano.

Fico pensando nos ciclos que ocorrem em silêncio dentro das minhas células, enquanto estou concentrado num texto, ou descansando depois do almoço. Existe um ritmo de oxidação, uma troca sutil de estados químicos, que se repete em cada célula do meu corpo, coordenado por um relógio que não depende de palavras, de consciência ou de genética tradicional. Esse ciclo ajuda o corpo a saber quando é hora de dormir, de acordar, de comer, de produzir hormônios, de regular a temperatura ou até de reagir a infecções. Ele é um maestro invisível que organiza a rotina de cada célula.

Muitas vezes, o debate sobre saúde ignora esse nível profundo de organização. Dormir mal, comer fora de hora, viver contra os ciclos naturais do dia e da noite não são apenas hábitos ruins. São rupturas com sistemas que vêm funcionando há bilhões de anos. Talvez seja por isso que doenças metabólicas, inflamatórias e até certas disfunções cognitivas estejam tão ligadas à disrupção dos ritmos circadianos.

E mesmo sabendo disso tudo, ainda é difícil adaptar a vida moderna a esse conhecimento. As telas à noite, os turnos de trabalho, os ritmos impostos pela produtividade nos afastam dos sinais naturais. E cada afastamento custa. Custa energia, custa saúde, custa coerência interna. O corpo sabe quando estamos fora de sintonia. Ele tenta corrigir, mas nem sempre consegue.


Referências:

 

1 - Circadian Biology: A 2.5 Billion Year Old Clock - Circadian Biology: A 2.5 Billion Year Old Clock - Um estudo recente sugere que os relógios circadianos podem ter evoluído na época do Grande Evento de Oxidação, há 2,5 bilhões de anos, para estimular a desintoxicação de espécies reativas de oxigênio. https://www.cell.com/current-biology/fulltext/S0960-9822(12)00668-9

2 - O Grande Evento de Oxigenação (GEO), também chamado de Catástrofe do Oxigênio, Crise de Oxigênio ou Grande Oxidação, foi um período em que a atmosfera da Terra e o então raso oceano experimentaram um aumento do teor de oxigênio, aproximadamente entre 2,4 bilhões de anos e 2,1-2,0 bilhões de anos, durante o período Paleoproterozoico. https://pt.wikipedia.org/wiki/Grande_Evento_de_Oxigena%C3%A7%C3%A3o

3 -  Peroxiredoxins are conserved markers of circadian rhythms - A vida celular surgiu há cerca de 3,7 bilhões de anos. Com raras exceções, os organismos terrestres evoluíram sob ciclos diários previsíveis devido à rotação da Terra. A vantagem conferida aos organismos que antecipam tais ciclos ambientais impulsionou a evolução de ritmos circadianos endógenos que ajustam a fisiologia interna às condições externas. A filogenia molecular dos mecanismos que impulsionam esses ritmos tem sido difícil de dissecar porque os genes e proteínas do relógio identificados não são conservados em todos os domínios da vida: bactérias, arqueas e eucariotos. https://pubmed.ncbi.nlm.nih.gov/22622569/

4 - Circadian clocks in human red blood cells - Relógios circadianos (aproximadamente 24 horas) são fundamentalmente importantes para a fisiologia coordenada em organismos tão diversos quanto cianobactérias e humanos. Todos os modelos atuais do mecanismo circadiano molecular em células eucarióticas são baseados em ciclos de retroalimentação transcrição-tradução. https://pubmed.ncbi.nlm.nih.gov/21270888/

Comportamento do cérebro e mudança

Cérebro, evolução, comportamento

Ouça o artigo:

O ser humano é, em muitos aspectos, imprevisível. Sua jornada pela vida pode ser alterada por detalhes que escapam à percepção. Tudo é um conjunto de fatores que pode influenciar ele. Desde o nascimento, não emerge como uma tábua em branco, mas sim com sinais iniciais de comportamento que refletem padrões inscritos em seu código genético. Isso é algo que desperta curiosidade e fascínio ao mesmo tempo. Basta observar organismos simples, como bactérias ou vírus, que seguem comportamentos fixos, orientados pela lógica da sobrevivência e da reprodução. No ser humano, entretanto, há um salto de complexidade. Ele pensa, elabora raciocínios, cria estruturas simbólicas, transforma o instinto em linguagem e cultura. Seu cérebro não apenas responde ao ambiente, ele antecipa, projeta e reconstrói. Essa capacidade de abstração e adaptação é uma das razões pelas quais conseguiu dominar o planeta.

Os estudos da psicologia comportamental ajudaram a clarear o entendimento sobre como esse comportamento é moldado com o tempo. B. F. Skinner, destacou o papel do ambiente e do reforço nas escolhas e reações de um indivíduo. O comportamento, segundo esse olhar, é consequência direta das consequências que ele produz. Um ato recompensado tende a se repetir. Um ato punido ou ignorado tende a desaparecer. Mas isso não quer dizer que o ser humano seja um robô condicionado. Ao contrário, o ser humano é moldado por camadas que se entrelaçam: genética, ambiente, memória, cultura, afetos e história pessoal. É justamente esse cruzamento de forças que o torna tão fascinante.

O cérebro humano, diferente de qualquer outro órgão, não apenas responde ao mundo externo, ele o antecipa, simula, questiona e até o nega. Essa habilidade de criar realidades internas, de imaginar possibilidades, de desenvolver moral, arte e ciência, fez com que o Homo sapiens se destacasse entre todas as espécies. A plasticidade cerebral, essa capacidade de se adaptar, é um dos grandes segredos dessa dominância. A cada experiência, o cérebro literalmente se transforma, conectando novos neurônios, fortalecendo circuitos, apagando caminhos pouco utilizados. Essa maleabilidade, documentada por centenas de pesquisas em neurociência comportamental, é o que possibilita mudanças profundas em nossas atitudes, mesmo diante de padrões antigos e arraigados.

Há algo de profundamente inquietante em perceber como detalhes do ambiente podem alterar estados emocionais, decisões e percepções. Uma simples mudança na temperatura da sala, um tom diferente de voz, uma memória evocada de forma inesperada já pode mudar todo o percurso do pensamento de alguém. Isso não é misticismo, é o que os estudos mais recentes sobre processamento inconsciente têm demonstrado com precisão. O ser humano está sempre sendo atravessada por informações que escapam ao controle consciente. É como se estivéssemos numa estrada, mas com várias mãos invisíveis ajustando a direção do volante sem que se perceba.

O comportamento de reprodução e sobrevivência observado em vírus, bactérias e outros organismos simples, de certa forma, também habita o ser humano. Mas nele, esse impulso primitivo é temperado por uma camada densa de significados. O desejo de sobrevivência pode se transformar em arte, em ciência, em religião. O impulso reprodutivo pode dar origem a famílias, narrativas, mitologias inteiras. Esse é um ponto fundamental que diferencia os seres humanos: sua capacidade de simbolizar, de transformar pulsões biológicas em construções culturais complexas. Como mostra o estudo publicado na PLOS(1), o cérebro humano é equipado com redes altamente desenvolvidas para processar símbolos, linguagem e abstrações, algo praticamente inexistente em outras espécies.

Outra pesquisa interessante, publicada na Frontiers in Human Neuroscience(2), mostra como o comportamento humano não é apenas influenciado por fatores genéticos ou sociais isoladamente, mas por uma dança contínua entre predisposição e aprendizado. Essa interação dinâmica ajuda a entender porque pessoas com histórias semelhantes escolhem caminhos tão distintos. A mesma experiência pode gerar resultados opostos dependendo do estado mental, do contexto e da estrutura emocional de quem a vive.

Talvez seja por isso que muitas vezes se observa seres humanos agindo contra seus próprios interesses conscientes. O cérebro está em guerra interna, a parte mais racional e lógica tenta tomar o controle, enquanto camadas mais profundas, conectadas ao medo, ao desejo e à memória afetiva, puxam para outros lados. A psicologia comportamental explica parte disso mostrando como comportamentos podem ser reforçados por recompensas que nem sempre são boas a longo prazo. Comer algo por impulso, explodir em raiva, sabotar um projeto importante, tudo isso pode ser resultado de padrões aprendidos e reforçados ao longo dos anos, mesmo que gerem sofrimento depois.

Mas o que talvez mais impressione é perceber que o cérebro é capaz de reprogramar seus próprios circuitos ao longo da vida. A neuroplasticidade, hoje amplamente reconhecida e respaldada por estudos como o publicado pela Nature(3), demonstra que, por meio da prática contínua, do esforço deliberado e da intenção clara, é possível provocar alterações estruturais em regiões cerebrais associadas à persistência e à autorregulação. Essas mudanças não são apenas funcionais, mas envolvem uma reorganização profunda que pode tocar inclusive aspectos do comportamento e da personalidade.

A imprevisibilidade do ser humano talvez não esteja no caos, mas na complexidade. Ele não é imprevisível por ser irracional, mas por ser influenciado por tantas camadas que se torna quase impossível prever qual delas irá se manifestar em cada situação. O ambiente influencia profundamente a expressão de emoções. Pensar sobre tudo isso deixa uma sensação estranha. Há uma ilusão de controle que frequentemente é desmontada quando se observa com mais calma como se forma o comportamento. Cada decisão tomada, cada gesto e cada reação carrega consigo histórias anteriores, traços herdados e impulsos que nem sempre passam pela luz da razão. Mas isso não significa que se está condenado ao determinismo. Significa apenas que a consciência é um processo mais profundo do que parece.

Os velhos debates entre natureza e cultura, instinto e aprendizado, ainda são válidos, mas já não se apresentam como opostos excludentes. Eles se entrelaçam, se complementam, se corrigem mutuamente. Ninguém nasce um ser pronto. Mas também ninguém nasce vazio. Há direções, há inclinações, há sementes que esperam o solo certo para brotar. E é nesse encontro entre o biológico e o simbólico que o ser humano se torna o que é. Capaz de construir pontes e destruir cidades, de criar beleza e praticar crueldades, de repetir padrões antigos e, com esforço, quebrá-los.


Referências:

 

1 - The Human Connectome: A Structural Description of the Human Brain - Este estudo discute como as redes de conexões do cérebro humano (o chamado connectome) são organizadas de maneira complexa, oferecendo uma base estrutural para funções cognitivas superiores, como linguagem, simbolização e abstração. Ele apresenta dados e teorias que reforçam exatamente a ideia de que o cérebro humano possui uma arquitetura diferenciada em relação a outras espécies, sendo especializado em transformar informação em representações simbólicas — como ocorre com linguagem, arte, lógica e cultura. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0010042

2 - Superior Pattern Processing is the Essence of the Evolved Human Brain - Este artigo argumenta que o que diferencia o cérebro humano é sua capacidade superior de processar padrões complexos. Essa habilidade permite a construção de estruturas cognitivas como linguagem, música, matemática e crenças abstratas. O artigo enfatiza a coevolução entre predisposição genética e aprendizado como chave para entender o comportamento humano https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2014.00265/full

3 - Plastic frontal pole cortex structure related to individual persistence in goal-directed behavior - Este estudo investigou como a persistência em comportamentos orientados por objetivos está relacionada a mudanças estruturais no córtex do polo frontal (FPC). Os pesquisadores descobriram que indivíduos que demonstraram maior persistência em tarefas cognitivas, de linguagem e motoras apresentaram alterações neuroplásticas significativas no FPC após o treinamento. https://www.nature.com/articles/s42003-020-0930-4

A melatonina e sua importância

https://i.postimg.cc/yxVJDfwg/melatonina-molecula.jpg

Ouça o artigo:

A melatonina é um dos hormônios naturais mais importantes para o corpo. Ela é, de fato, famosa por sua relação com o sono, mas o papel desse hormônio vai muito além de simplesmente nos ajudar a dormir. Vamos explorar o que é a melatonina, como ela funciona, e por que ela é tão importante para nossa saúde.

Esse hormônio é produzido principalmente pela glândula pineal, uma pequena glândula localizada no centro do nosso cérebro. Embora sua produção seja mais conhecida por ocorrer à noite, quando estamos nos preparando para dormir, ela também desempenha várias outras funções importantes no corpo.

A produção de melatonina é estimulada pela escuridão e inibida pela luz. Isso faz dela um dos principais reguladores do nosso ciclo circadiano, o famoso "relógio biológico". Esse ciclo é o responsável por nos fazer sentir sono à noite e nos manter alerta durante o dia. Quando anoitece, nossos olhos percebem a diminuição da luz, e essa informação é enviada ao cérebro, que então começa a liberar melatonina. Esse processo nos prepara para o sono, diminuindo a temperatura corporal, reduzindo a atividade metabólica e induzindo uma sensação de relaxamento.

Sua principal função é regular o sono, ela nos ajuda a adormecer mais facilmente e a manter um sono profundo e reparador durante a noite. No entanto, a quantidade de melatonina que produzimos pode variar de pessoa para pessoa e também ao longo da vida. Por exemplo, bebês e crianças pequenas produzem abundância de melatonina, o que explica porque elas dormem tão profundamente. Já em adultos e idosos, a produção tende a diminuir, o que pode levar a problemas como insônia ou dificuldades para manter um sono contínuo. À medida que envelhecemos, a produção de melatonina naturalmente diminui. Essa redução está associada a vários aspectos do envelhecimento, incluindo distúrbios do sono, redução da função imunológica e aumento do estresse oxidativo no corpo.

Diversos fatores externos podem afetar a produção, como a exposição à luz artificial à noite, o uso de eletrônicos antes de dormir e até mesmo o estresse. Esses fatores podem "enganar" o cérebro, fazendo-o pensar que ainda é dia, o que inibe a produção de melatonina e dificulta o início do sono.

Devido ao seu papel importante no sono, não é surpresa que ela seja frequentemente usada como um suplemento para combater a insônia e outros distúrbios do sono. A melatonina sintética, disponível em forma de comprimidos, cápsulas e líquidos, é amplamente utilizada para regular o sono, especialmente em casos de jet lag (quando viajamos para diferentes fusos horários) ou em trabalhadores noturnos que precisam dormir durante o dia.

No entanto, o uso de melatonina em capsulas tem várias controvérsias científicas, ela pode funcionar bem para algumas pessoas, ajudando no sono e na regulação do ciclo circadiano, mas há uma grande variabilidade na resposta. Para algumas pessoas, a melatonina em capsulas não parece ter efeitos significativos. Alguns especialistas argumentam que o uso regular delas pode interferir na produção natural do hormônio pelo corpo, desregulando o ciclo circadiano a longo prazo.

Agora, um dos aspectos mais intrigantes da melatonina é sua relação com o câncer. Estudos preliminares indicam que a melatonina pode ter um efeito protetor contra certos tipos de câncer, como o câncer de mama, próstata e cólon. Acredita-se que ela possa inibir o crescimento de células cancerígenas, além de melhorar a eficácia de tratamentos como a quimioterapia.

Por exemplo, em casos de câncer de mama, a melatonina pode ajudar a regular os níveis de estrogênio, um hormônio que, em excesso, pode aumentar o risco de desenvolvimento de câncer. Ela também pode interferir na produção de novos vasos sanguíneos em tumores, um processo conhecido como angiogênese, fundamental para o crescimento e disseminação do câncer.

Em outros estudos ela têm mostrado possuir propriedades antioxidantes e anti-inflamatórias, o que significa que pode ajudar a proteger as células do corpo contra danos e reduzir a inflamação. Sua ação antioxidante pode ajudar a proteger a pele contra os danos causados pela radiação ultravioleta (UV) e outros agressores ambientais, como a poluição. Inclusive ela pode ajudar a manter a elasticidade e a hidratação da pele, retardando o aparecimento de rugas e outros sinais de envelhecimento.

A melatonina é mais do que simplesmente o "hormônio do sono". Ela desempenha um papel na regulação do ciclo circadiano, na proteção das nossas células, no fortalecimento do sistema imunológico e até na prevenção de algumas doenças. Estudos contínuos estão nos ajudando a entender melhor esse hormônio tão importante e outros que também desempenham papéis essenciais em nossa saúde. E estes aqui foram apenas um de muitos que estão sendo desenvolvidos.



Referências:

Melatonina: https://pt.wikipedia.org/wiki/Melatonina

Alterações nos níveis de melatonina relacionadas à idade em humanos e suas possíveis consequências para distúrbios do sono: https://www.sciencedirect.com/science/article/abs/pii/S0531556598000540

Melatoninas em capsulas, tudo que você precisa saber: https://www.nccih.nih.gov/health/melatonin-what-you-need-to-know

Melatonina no Tratamento do Câncer: Conhecimento Atual e Oportunidades Futuras: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123278/