
Há ideias que só ganham corpo quando a gente se move. Entre consultas, exames e o esforço de recompor a rotina depois do tratamento, muita gente ouve que “exercício faz bem”. A frase é correta, só que genérica demais para guiar escolhas. O que significa “faz bem” quando olhamos para o sangue que circula, para as proteínas que sobem e descem, para o jeito como as células se comportam? A resposta começa no próprio músculo. Toda vez que ele contrai, não entrega apenas força para subir escadas ou empurrar um carrinho. Ele envia mensagens químicas que viajam pelo corpo e modulam processos em órgãos distantes, inclusive nas vizinhanças onde tumores se formam ou são mantidos em dormência. Vale mesmo falar em “mensagens”? Vale, porque dá para medir essas moléculas, acompanhar o seu tempo de vida, e observar como elas interferem no crescimento celular em experimentos controlados.
Para visualizar o mecanismo, imagine o músculo como um órgão endócrino. “Endócrino” significa que ele libera substâncias no sangue que atuam à distância. No exercício, várias dessas substâncias são chamadas de mioquinas (proteínas sinalizadoras produzidas por fibras musculares ativas). Quatro nomes aparecem com frequência quando o assunto é câncer: interleucina-6 (IL-6), decorina, SPARC (sigla em inglês para secreted protein acidic and rich in cysteine) e oncostatina M (OSM). Cada uma segue uma rota. A IL-6 costuma subir de forma acentuada durante e logo após contrações vigorosas e cair em poucas horas; é um pulso que organiza adaptações metabólicas e imunológicas. A decorina é uma proteoglicana pequena que interage com receptores de crescimento e com a matriz extracelular, modulando o “volume” de sinais que empurram células a se dividir. A SPARC atua na arquitetura do tecido, regulando adesão e migração. A OSM participa de vias que podem empurrar células para estados menos proliferativos e mais diferenciados. O detalhe importante é que essas moléculas não atuam isoladamente, elas compõem um coquetel biológico que muda conforme a intensidade do esforço, a massa muscular engajada e a história clínica de quem treina.
Como transformar essa narrativa em evidência? Um desenho experimental simples e elegante tem sido usado para capturar o fenômeno. Primeiro, mede-se o estado basal (mioquinas em repouso). Em seguida, realiza-se uma sessão única de exercício. Coleta-se sangue imediatamente após o esforço e, trinta minutos depois, uma nova amostra. Com esse material em mãos, dá para fazer duas coisas relevantes: quantificar as mioquinas e testar o próprio soro sobre células tumorais cultivadas em laboratório. Em vez de pingar um composto isolado sobre a placa, expõe-se as células a tudo o que o corpo secretou em resposta ao treino, de uma vez. Se o crescimento diminui sob esse “banho” de soro condicionado pelo exercício, temos um sinal integrado de que o conjunto de mensageiros carrega potência antiproliferativa.
Aplicado a sobreviventes de câncer de mama, esse protocolo revela um padrão nítido. Logo após a sessão, IL-6, decorina e SPARC aumentam em quem treinou resistência com pesos (RT) e em quem fez treinamento intervalado de alta intensidade (HIIT). Na janela de trinta minutos, a IL-6 costuma permanecer acima do repouso nos dois grupos, enquanto a OSM ganha destaque principalmente após a sessão com pesos. Na comparação direta entre modalidades, o HIIT tende a provocar um pico mais alto de IL-6 imediatamente após o esforço, o que combina com sua maior exigência metabólica no mesmo intervalo de tempo. Em laboratório, o soro recolhido nessa janela freia o crescimento de uma linhagem agressiva de câncer de mama (MDA-MB-231), com uma redução mais pronunciada logo após o HIIT. Em outras palavras: uma única sessão, em pessoas reais, já deixa o sangue “diferente” o suficiente para desacelerar células tumorais em cultura.
Por que a IL-6 merece atenção especial? Porque ela tem duas faces e o contexto define o seu sentido. Em cenários crônicos, níveis persistentemente altos dessa citocina se associam a inflamação de baixo grau e piores desfechos. No exercício, a história muda. O músculo se torna a fonte dominante e o que surge é um pulso agudo, efêmero, com função adaptativa. Esse pulso favorece o uso de glicose pelo músculo, mobiliza reservas energéticas e reorganiza conversas com células do sistema imune. Parece paradoxal? Só até lembrarmos que o corpo lê duração, intensidade e contexto. Um pico curto, fruto de contrações intensas, é uma espécie de “alerta construtivo” que abre janelas para adaptação e, ao que tudo indica, contribui para um soro com maior capacidade de inibir proliferação em certos modelos celulares.
Decorina e SPARC contam outra parte da história. A decorina se liga a receptores tirosina-quinase, como EGFR e Met, modulando a sensibilidade de células a sinais pró-crescimento. Em termos práticos, ajuda a abaixar o volume de vias proliferativas. A SPARC, por sua vez, participa da organização da matriz extracelular (a rede de proteínas que envolve as células), influenciando como elas se aderem e migram. Quando o esforço eleva temporariamente essas moléculas, o microambiente de cultura parece se tornar menos convidativo ao avanço descontrolado. A OSM entra como peça que, em certos contextos, empurra células para estados menos proliferativos e mais diferenciados. Não é um único tiro de precisão, é uma orquestra em que o conjunto dá o tom.
Você pode perguntar: e a validade externa de um ensaio em placa? A pergunta é necessária. Cultura bidimensional não replica vasos, gradientes de oxigênio, infiltração de células imunes nem a heterogeneidade estrutural de um tumor real. Mesmo assim, responde a uma questão clara: mensageiros liberados pelo músculo têm força para influenciar, de forma integrada, uma linhagem agressiva quando chegam pela corrente sanguínea? Quando o resultado é positivo, ganhamos um mapa mecanístico. Não é uma promessa clínica, é um sinal de plausibilidade que incentiva estudos mais longos, com endpoints clínicos duros, e modelos tridimensionais (esferoides, organoides) que mimetizam melhor a anatomia do tumor.
Detalhar o conteúdo das sessões ajuda quem quer aplicar o conhecimento com segurança. No treino de resistência, um esquema típico envolve cinco séries de oito repetições por exercício, contemplando grandes grupos musculares: empurrar com o peito, puxar com as costas, agachar, estender e flexionar joelhos, estabilizar ombros. A carga é ajustada para que a percepção subjetiva de esforço (RPE, rating of perceived exertion, em uma escala de 1 a 10) fique entre 7 e 9, faixa em que o trabalho é difícil, porém tolerável com técnica. Descansos de um a dois minutos preservam a qualidade do movimento. Alternar exercícios de membros superiores e inferiores ajuda a distribuir a fadiga e manter o foco técnico.
No HIIT, a estrutura favorece sprints curtos de trinta segundos intercalados por trinta segundos de recuperação ativa, repetidos em blocos que podem passar por diferentes ergômetros (bicicleta estacionária, esteira, remo, elíptico). A intensidade dos sprints mira 70 a 90% da frequência cardíaca máxima estimada ou, novamente, RPE 7-9. Entre os blocos, pausas um pouco mais longas permitem manter a qualidade do estímulo. O resultado prático é um estresse metabólico mais denso por minuto, o que explica o pico mais alto de IL-6 imediatamente após a sessão e, com ele, um freio mais acentuado no crescimento celular observado com o soro daquela janela.
Dois termos merecem tradução didática: RPE é simplesmente a forma como você quantifica o quão difícil está o esforço agora. Não substitui medidas objetivas, porém as complementa e reage aos altos e baixos do dia. Já “área sob a curva” (AUC) resume todo o crescimento observado em 72 horas em uma grandeza única: integra, no tempo, a impedância elétrica gerada pelas células aderidas a uma placa com sensores. Diminuir a AUC significa que, no acumulado, as células avançaram menos. É uma métrica robusta para captar efeitos que não são instantâneos, mas se acumulam.
Outra pergunta frequente surge quando se menciona terapia hormonal em andamento, efeitos tardios de quimioterapia ou diferenças de composição corporal. Esses fatores existem e podem modular a amplitude do pulso de mioquinas. Ainda assim, o padrão observado, subida de IL-6, decorina e SPARC logo após o esforço, sinal de OSM mais visível após RT, freio do crescimento em ambos, atravessa a heterogeneidade clínica. Se os detalhes variam de pessoa para pessoa, o desenho experimental ajuda a reduzir ruído: alocação aleatória entre modalidades, coleta em múltiplos tempos, análises em duplicata com ELISA (ensaio imunoenzimático) e leitura em tempo real do comportamento celular por 72 horas.
Por que insistir na ideia de pulso agudo? Porque a chave está no tempo. Inflamação crônica sustenta processos indesejáveis. O pulso do exercício dura horas e, ao desaparecer, deixa rastros de adaptação: melhor sensibilidade à insulina, aumento de capilares no músculo, ajustes finos em vias de defesa. Em oncologia, a hipótese de trabalho é que pulsos repetidos construam, em média, um cenário menos permissivo à expansão de clones malignos. Pense em enviar cartas curtas e regulares ao corpo, dizendo: “mexa no metabolismo”, “treine a resposta imune”, “reorganize a matriz”. Cada carta sozinha é modesta; o conjunto, ao longo de semanas, pode mudar o clima biológico.
Como transformar essa fisiologia em agenda semanal? Um esqueleto possível, sempre alinhado ao aval médico, combina duas sessões de RT e uma ou duas de HIIT, com dias de descanso ativo entre elas. Cada sessão começa com aquecimento progressivo, passa por blocos principais e fecha com desaquecimento leve. A progressão em RT acontece quando as últimas repetições deixam de desafiar; a progressão em HIIT vem na forma de alguns segundos adicionais de sprint, descanso um pouco menor ou uma leve elevação da velocidade, sem sacrificar a técnica. Nos dias intermediários, caminhadas, pedaladas tranquilas ou mobilidade mantêm o corpo em movimento e favorecem recuperação.
Reforçando o ponto central: a sessão de hoje já produz um retrato sanguíneo que, em laboratório, desacelera uma linhagem agressiva. Ninguém está equiparando treino a fármaco. A mensagem é outra: exercício tem potência mecanística. Em vez de ser visto apenas como coadjuvante da disposição ou do controle de peso, ele entra como fator que conversa com vias de crescimento tumoral. Para quem está no consultório, isso se traduz em recomendações aplicáveis; para quem está no laboratório, vira hipóteses testáveis sobre via de sinalização, matriz e imunidade.
A randomização entre RT e HIIT reduz vieses ocultos. Medir mioquinas com sensibilidades conhecidas e variações aceitáveis de ensaio melhora a confiabilidade. Usar análise celular em tempo real, com leitura a cada quinze minutos por três dias, evita que uma única fotografia distorça a narrativa. Existem limites honestos: trabalhar com uma única linhagem restringe generalizações; culturas em duas dimensões não reproduzem a complexidade de um tumor vivo; medicamentos concomitantes podem modular respostas. Esses limites não anulam o sinal, apenas definem próximos passos: modelos 3D, painéis mais amplos de marcadores, acompanhamento longitudinal e endpoints clínicos.
A IL-6 volta ao palco porque ela simboliza o cuidado com interpretações apressadas. Ler que IL-6 se associa a pior evolução e concluir que qualquer aumento é indesejável é um atalho enganoso. Em exercício, contexto governa significado. Um pulso breve, vindo do músculo e acompanhado de catecolaminas (adrenalina e noradrenalina), alterações de cálcio dentro da fibra e tensão mecânica, sinaliza adaptação, não dano. Ele se dissipa sem deixar o rastro de inflamação crônica. Picos um pouco maiores no HIIT não contradizem prudência; revelam que a modalidade, por sua densidade metabólica, convoca a musculatura a enviar um telegrama mais alto.
Do ponto de vista psicológico, talvez a ideia mais motivadora seja a de que o benefício começa antes de metas grandiosas. Não é necessário esperar ganhar massa magra visível ou completar longas distâncias para acionar as primeiras cartas químicas. Ao respirar fundo no fim de um circuito bem calibrado, o seu soro já está diferente. Essa sensação de agência, “hoje fiz algo que mexe com o meu corpo de forma mensurável”, ajuda a sustentar o hábito. Há dias bons e dias ruins. Neles, a escala RPE serve como bússola. Se a percepção subir demais, dá para reduzir volume, alongar a recuperação ou trocar o estímulo por algo mais técnico. Segurança não é obstáculo à intensidade; é o que permite repeti-la.
Se você já treinou e sentiu o corpo “ligado” por algumas horas, essa sensação tem expressão bioquímica. Mioquinas sobem, descem, encostam em receptores, reprogramam metabolismo. Em sobreviventes de câncer de mama, essa coreografia aparece como aumentos de IL-6, decorina e SPARC imediatamente após a sessão, com a OSM destacando-se mais na resistência meia hora depois. O soro desse momento freia o crescimento de células agressivas em cultura, e há um indício de que os picos mais intensos de esforço, como os do HIIT, intensificam o efeito imediato. Repare como esse ponto dialoga com a ideia repetida lá em cima: pulsos importam, e o corpo escuta a intensidade.
Quando penso nas implicações em larga escala, enxergo uma escada. Cada sessão é um degrau. O lance completo se constrói com paciência, porém nenhum degrau é inútil. Para quem atravessou a montanha-russa emocional e física de um tratamento oncológico, perceber que existe algo acessível, com baixo risco e respaldo mecanístico, traz uma forma discreta de poder. A tarefa da ciência aplicada será refinar protocolos, testar modelos 3D, medir painéis mais amplos de mensageiros e acompanhar resultados clínicos por mais tempo. A tarefa da prática é organizar a agenda, monitorar sinais e cuidar do corpo que, quando se contrai, também conversa.
Se há uma ideia para guardar, que seja esta: um treino único já altera o cenário químico do seu sangue, e esse cenário pode desfavorecer o avanço de células tumorais sensíveis em laboratório. A mensagem é simples, embora cheia de camadas: movimento produz sinal, sinal molda ambiente, ambiente influencia comportamento celular. Quando essa cadeia acontece repetidas vezes, algo muda por dentro, discretamente, de forma acumulativa, do tipo de mudança que não se nota no espelho amanhã cedo, mas que prepara terreno. E preparar terreno, em saúde, costuma ser o primeiro passo para colher diferenças que importam.
Referências:
Hayes SC, et al. (2019) The Exercise & Sports Science Australia position statement: exercise medicine in cancer management. - Posicionamento da ESSA: exercício como “medicina” no manejo do câncer: Diretrizes práticas para prescrição segura e eficaz de exercício em oncologia. https://linkinghub.elsevier.com/retrieve/pii/S1440-2440(18)31270-2
Campbell KL, et al. (2019) Exercise guidelines for cancer survivors: consensus statement from an international multidisciplinary roundtable. - Diretrizes de exercício para sobreviventes de câncer: consenso internacional: Recomendações baseadas em evidências para modalidades, volume e segurança. https://journals.lww.com/acsm-msse/fulltext/2019/11000/exercise_guidelines_for_cancer_survivors_.23.aspx
Joaquim A, et al. (2022) Impact of physical exercise programs in breast cancer survivors on HRQoL, physical fitness, and body composition: evidence from systematic reviews and meta-analyses. - Impacto de programas de exercício em sobreviventes de câncer de mama: Síntese que demonstra ganhos em qualidade de vida, aptidão e composição corporal. https://pmc.ncbi.nlm.nih.gov/articles/PMC9782413/
Bettariga F, et al. (2024) Effects of resistance training vs high-intensity interval training… a randomized trial. - Efeitos de musculação vs HIIT em sobreviventes de câncer de mama: ensaio randomizado: Compara RT e HIIT em força, VO₂, composição e qualidade de vida. https://link.springer.com/article/10.1007/s10549-024-07559-5
Bettariga F, et al. (2025) Effects of exercise on inflammation in female survivors of nonmetastatic breast cancer: a systematic review and meta-analysis. - Efeitos do exercício na inflamação em sobreviventes de câncer de mama não metastático: Integra marcadores inflamatórios e resultados clínicos frente a diferentes treinos. https://academic.oup.com/jnci/advance-article/doi/10.1093/jnci/djaf062/8088366
Friedenreich CM, et al. (2020) Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. - Atividade física e mortalidade em sobreviventes: Associa níveis maiores de atividade a menor mortalidade por todas as causas e específica por câncer. https://pmc.ncbi.nlm.nih.gov/articles/PMC7050161/
Zagalaz-Anula N, et al. (2022) Recreational physical activity reduces breast cancer recurrence in female survivors: a meta-analysis. - Atividade física recreativa reduz recorrência em sobreviventes: Meta-análise indicando menor risco de recorrência com prática regular. https://linkinghub.elsevier.com/retrieve/pii/S1462-3889(22)00070-9
Bettariga F, et al. (2025) Association of muscle strength and cardiorespiratory fitness with all-cause and cancer-specific mortality in patients with cancer: a systematic review and meta-analysis. - Força e aptidão cardiorrespiratória associadas à mortalidade em pacientes oncológicos: Sugere que melhor aptidão está ligada a menor mortalidade geral e específica. https://bjsm.bmj.com/lookup/pmidlookup?view=long&pmid=39837589
Pedersen BK. (2013) Muscle as a secretory organ. - Músculo como órgão secretor: Consolida o conceito de mioquinas e seus efeitos endócrinos sistêmicos. https://onlinelibrary.wiley.com/doi/10.1002/j.2040-4603.2013.tb00522.x
Pedersen BK, Febbraio MA. (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. - Músculo como órgão endócrino com foco em IL-6: Detalha IL-6 como mioquina e seus papéis metabólicos e imunológicos. https://journals.physiology.org/doi/full/10.1152/physrev.90100.2007
Pedersen BK, et al. (2007) Role of myokines in exercise and metabolism. - Papel das mioquinas no exercício e no metabolismo: Introduz a classe de moléculas e sua atuação autócrina, parácrina e endócrina. https://journals.physiology.org/doi/10.1152/japplphysiol.00080.2007
Bettariga F, et al. (2024) Exercise training mode effects on myokine expression in healthy adults: a systematic review with meta-analysis. - Como o tipo de treino altera a expressão de mioquinas: Compara RT, endurance e HIIT nos perfis de mioquinas em adultos saudáveis. https://pmc.ncbi.nlm.nih.gov/articles/PMC11336361/
Kim JS, et al. (2021) Exercise-induced myokines and their effect on prostate cancer. - Mioquinas induzidas por exercício e seus efeitos no câncer de próstata: Revisão mecanística do eixo músculo-tumor. https://www.nature.com/articles/s41585-021-00476-y
Bettariga F, et al. (2024) Effects of short- and long-term exercise training on cancer cells in vitro. - Efeitos de treinos curtos e crônicos sobre células de câncer in vitro: Integra dados sobre soro condicionado e exposição de células a mediadores induzidos pelo exercício. https://www.sciencedirect.com/science/article/pii/S2095254624001510
Bettariga F, et al. (2023) Suppressive effects of exercise-conditioned serum on cancer cells: a narrative review. - Efeitos supressores do soro condicionado pelo exercício: Revisão narrativa sobre como modalidade/intensidade/volume modulam a resposta antitumoral in vitro. https://pmc.ncbi.nlm.nih.gov/articles/PMC11184317/
Orange ST, Jordan AR, Saxton JM. (2020) The serological responses to acute exercise in humans reduce cancer cell growth in vitro: a systematic review and meta-analysis. - Respostas serológicas ao exercício agudo reduzem crescimento de células cancerosas in vitro: Meta-análise mostrando efeito imediato do soro pós-exercício. https://pmc.ncbi.nlm.nih.gov/articles/PMC7673630/
Chen J, et al. (2022) IL-6: the link between inflammation, immunity and breast cancer. - IL-6: o elo entre inflamação, imunidade e câncer de mama: Atualiza funções contextuais da IL-6 na oncogênese e na resposta imune. https://pmc.ncbi.nlm.nih.gov/articles/PMC9341216/
Hutt JA, DeWille JW. (2002) Oncostatin M induces growth arrest of mammary epithelium via a C/EBPδ-dependent pathway. - Oncostatina M induz parada de crescimento no epitélio mamário: Mostra via dependente de C/EBPδ ligada a diferenciação e antiproliferação. https://pubmed.ncbi.nlm.nih.gov/12479220/
Bozoky B, et al. (2014) Decreased decorin expression in the tumor microenvironment. - Expressão reduzida de decorina no microambiente tumoral: Associa baixa decorina a pior regulação de receptores e progressão. https://pmc.ncbi.nlm.nih.gov/articles/PMC4101739/
Tai IT, Tang MJ. (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. - SPARC na biologia do câncer: papel na progressão e potencial terapêutico: Revisão sobre funções matricelulares e impacto em adesão/migração. https://linkinghub.elsevier.com/retrieve/pii/S1368-7646(08)00048-4
Baldelli G, et al. (2021) Effects of human sera conditioned by high-intensity exercise on tumorigenic potential of cancer cells. - Soro humano condicionado por exercício intenso e potencial tumorigênico: Demonstra redução de viabilidade/migração em várias linhagens após HIIT. https://link.springer.com/article/10.1007/s12094-020-02388-6
Dethlefsen C, et al. (2016) Exercise regulates breast cancer cell viability: systemic training adaptations vs acute exercise responses. - Exercício regula a viabilidade de células de câncer de mama: Compara efeitos imediatos do soro pós-sessão com adaptações após treinamento. https://link.springer.com/article/10.1007/s10549-016-3970-1
Devin JL, et al. (2019) Acute high-intensity interval exercise reduces colon cancer cell growth. - HIIT agudo reduz crescimento de células de câncer de cólon: Evidencia mecanismos associados a alterações séricas pós-exercício. https://pmc.ncbi.nlm.nih.gov/articles/PMC6462486/
Rundqvist H, et al. (2013) Effect of acute exercise on prostate cancer cell growth. - Efeito do exercício agudo no crescimento de células de câncer de próstata: Mostra soro pós-exercício inibindo crescimento e migração. https://pmc.ncbi.nlm.nih.gov/articles/PMC3702495/
Dethlefsen C, et al. (2017) Exercise-induced catecholamines activate the Hippo tumor suppressor pathway… - Catecolaminas induzidas pelo exercício ativam a via supressora de tumor Hippo: Liga surto adrenérgico a sinais antiproliferativos em células de mama. https://aacrjournals.org/cancerres/article/77/18/4894/623193/Exercise-Induced-Catecholamines-Activate-the-Hippo
De Santi M, et al. (2019) Dataset on the effect of exercise-conditioned human sera in 3D breast cancer cell culture. - Base de dados sobre soro condicionado em culturas 3D de câncer de mama: Recurso metodológico para reprodutibilidade e novas análises. https://pmc.ncbi.nlm.nih.gov/articles/PMC6838928/
Bachelot T, et al. (2003) Prognostic value of serum IL-6 and VEGF in hormone-refractory metastatic breast cancer. - Valor prognóstico de IL-6 e VEGF séricos no câncer de mama metastático hormônio-refratário: Relaciona níveis elevados a pior prognóstico. https://pmc.ncbi.nlm.nih.gov/articles/PMC2377148/
Douglas AM, et al. (1998) Oncostatin M induces the differentiation of breast cancer cells. - Oncostatina M induz diferenciação em células de câncer de mama: Evidencia mudança fenotípica associada à redução proliferativa. https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0215(19980105)75:1%3C64::AID-IJC11%3E3.0.CO;2-D
Hu X, et al. (2021) Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. - Supressão mediada por decorina em câncer de mama inflamatório: Mostra efeitos antitumorigênicos e antimetastáticos da decorina. https://pmc.ncbi.nlm.nih.gov/articles/PMC7811004/
Arnold SA, Brekken RA. (2009) SPARC: a matricellular regulator of tumorigenesis. - SPARC: um regulador matricelular da tumorigênese: Revisão do papel de SPARC na interação célula-matriz e progressão tumoral. https://pmc.ncbi.nlm.nih.gov/articles/PMC2778590/
Williams N. (2017) The Borg rating of perceived exertion (RPE) scale. - Escala de percepção de esforço de Borg (RPE): Nota técnica sobre uso e interpretação clínica/treinamento. https://academic.oup.com/occmed/article-abstract/67/5/404/3975235?redirectedFrom=fulltext
Helms ER, et al. (2018) RPE vs percentage 1RM loading in periodized programs matched for sets and reps. - RPE vs %1RM em programas periodizados: Compara prescrição autoregulada com cargas relativas para força. https://pmc.ncbi.nlm.nih.gov/articles/PMC5877330/
Hojman P, et al. (2011) Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. - Citocinas musculares induzidas por exercício inibem crescimento de células mamárias: Demonstra papel de mioquinas na supressão tumoral. https://journals.physiology.org/doi/full/10.1152/ajpendo.00520.2010
Aoi W, et al. (2013) A novel myokine, SPARC, suppresses colon tumorigenesis via regular exercise. - Uma nova mioquina, SPARC, suprime a tumorigenese de cólon via exercício regular: Vincula treino crônico à proteção contra tumores de cólon. https://gut.bmj.com/lookup/pmidlookup?view=long&pmid=22851666
Athanasiou N, Bogdanis GC, Mastorakos G. (2023) Endocrine responses of the stress system to different types of exercise. - Respostas endócrinas do sistema de estresse a diferentes tipos de exercício: Integra catecolaminas, eixo HPA e intensidade/volume do esforço. https://pmc.ncbi.nlm.nih.gov/articles/PMC10023776/
Papanicolaou DA, et al. (1996) Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines. - Exercício estimula secreção de IL-6: inibição por glicocorticoides e correlação com catecolaminas: Base fisiológica clássica da IL-6 como mioquina. https://journals.physiology.org/doi/abs/10.1152/ajpendo.1996.271.3.E601
Herrmann SD, et al. (2024) 2024 adult compendium of physical activities: a third update of the energy costs of human activities. - Compêndio adulto 2024 de atividades físicas: terceira atualização dos custos energéticos: Tabela de METs para estimar gasto energético por atividade. https://pmc.ncbi.nlm.nih.gov/articles/PMC10818145/
Nayak P, et al. (2023) Three-dimensional in vitro tumor spheroid models for evaluation of anticancer therapy: recent updates. - Modelos tridimensionais de esferoides tumorais in vitro: atualizações recentes: Discute vantagens dos modelos 3D para testar terapias. https://pmc.ncbi.nlm.nih.gov/articles/PMC10571930/
Pinto B, Henriques AC, Silva PM, Bousbaa H. (2020) Three-dimensional spheroids as in vitro preclinical models for cancer research. - Esferoides tridimensionais como modelos pré-clínicos in vitro: Revisão metodológica sobre esferoides em pesquisa oncológica. https://pmc.ncbi.nlm.nih.gov/articles/PMC7762220/
Gonzalez H, Hagerling C, Werb Z. (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. - Papéis do sistema imune no câncer: da iniciação à metástase: Integra mecanismos imunes na evolução tumoral. https://pmc.ncbi.nlm.nih.gov/articles/PMC6169832/
Østergaard L, et al. (2013) The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. - Relação entre fluxo sanguíneo tumoral, angiogênese, hipóxia e glicólise aeróbia: Explora vínculos fisiopatológicos centrais no microambiente tumoral. https://pubmed.ncbi.nlm.nih.gov/23764543/
Muz B, et al. (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. - O papel da hipóxia na progressão do câncer, angiogênese, metástase e resistência à terapia: Revisão sobre como a baixa oxigenação dirige agressividade tumoral. https://pmc.ncbi.nlm.nih.gov/articles/PMC5045092/
Fiuza-Luces C, et al. (2024) The effect of physical exercise on anticancer immunity. - O efeito do exercício na imunidade anticâncer: Revisão de alto nível sobre como o treinamento modula vigilância imune e resposta antitumoral. https://www.nature.com/articles/s41577-023-00943-0
0 comments:
Postar um comentário